2,333 research outputs found

    Can Universe Experience Many Cycles with Different Vacua ?

    Full text link
    Recently, the notion that the number of vacua is enormous has received increased attentions, which may be regarded as a possible anthropical explanation to incredible small cosmological constant. Further, a dynamical mechanisms to implement this possibility is required. We show in an operable model of cyclic universe that the universe can experience many cycles with different vacua, which is a generic behavior independent of the details of the model. This might provide a distinct dynamical approach to an anthropically favorable vacuum.Comment: RevTex, 10 pages, 4 eps figures, accepted by PRD(R), new title and changes in the text to match publicatio

    One-Step Synthesis of Graphene Oxide-Polyamidoamine Dendrimer Nanocomposite Hydrogels by Self-Assembly

    Get PDF
    Graphene oxide (GO)-polyamidoamine (PAMAM) dendrimer nanocomposite hydrogels were prepared through a one-step synthesis by mixing a GO suspension and a PAMAM solution at varying ratios of GO to PAMAM. The materials self-assembled into physically cross-linked networks, mainly driven by electrostatic interactions between the oppositely charged GO nanosheets and PAMAM dendrimer. The chemical structure of PAMAM dendrimer was studied by mass spectrometry, nuclear magnetic resonance spectroscopy, and potentiometric titration. The structure and properties of GO-PAMAM nanocomposite hydrogels were investigated by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and rheometry. The nanocomposite hydrogels exhibited a relatively high mechanical performance with a storage modulus of up to 284 kPa, as well as self-healing property, owing to their reversible and multiple physical cross-links. These hydrogels may be further developed for biomedical applications

    Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Get PDF
    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests were characterized by the highest winter Reco rates (0.90 ± 0.39 g C m-2 d-1), when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02 ± 0.02 g C m-2 d-1). Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g C m-2 d-1) of 0.70(±0.33), 0.60(±0.38), 0.62(±0.43), 0.49(±0.22) and 0.27(±0.08), respectively. Our cross site analysis showed that winter air (Tair) and soil (Tsoil) temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands). Besides temperature, the seasonal amplitude of the leaf area index (LAI), inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (QS) was higher than the one over time (interannual, QT). This can be expected because QS not only accounts for climate gradients across sites but also for (positively correlated) the spatial variability of substrate quantity. Thus, if the models estimate future warming impacts on Reco based on QS rather than QT, this could overestimate the impact of temperature change

    Loop quantum gravity effects on inflation and the CMB

    Get PDF
    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyze the cosmological perturbations generated when slow-roll is violated after super-inflation, and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index.Comment: revtex4, 5 pages, 3 figures, significant improvements in explanation of quantization and perturbation issues; version to appear Classical and Quantum Gravit

    Assisted Tachyonic Inflation

    Full text link
    The model of inflation with a single tachyon field generates larger anisotropy and has difficulties in describing the formation of the Universe . In this paper we consider a model with multi tachyon fields and study the assisted inflationary solution. Our results show that this model satisfies the observation.Comment: 5 pages, no figures, a revised version and reference adde

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    Inflationary Attractor in Braneworld Scenario

    Full text link
    We demonstrate the attractor behavior of inflation driven by a scalar field or a tachyon field in the context of recently proposed four-dimensional effective gravity induced on the world-volume of a three-brane in five-dimensional Einstein gravity, and we obtain a set of exact inflationary solutions. Phase portraits indicate that an initial kinetic term decays rapidly and it does not prevent the onset of inflation. The trajectories more rapidly reach the slow-roll curve than in the standard cosmology.Comment: 7 pages, 8 figures, RevTeX, to appear in Phys. Rev. D69 (2004

    Curvature perturbation in multi-field inflation with non-minimal coupling

    Full text link
    In this paper we discuss a multi-field model of inflation in which generally all fields are non-minimally coupled to the Ricci scalar and have non-canonical kinetic terms. The background evolution and first-order perturbations for the model are evaluated in both the Jordan and Einstein frames, and the respective curvature perturbations compared. We confirm that they are indeed not the same - unlike in the single-field case - and also that the difference is a direct consequence of the isocurvature perturbations inherent to multi-field models. This result leads us to conclude that the notion of adiabaticity is not invariant under conformal transformations. Using a two-field example we show that even if in one frame the evolution is adiabatic, meaning that the curvature perturbation is conserved on super-horizon scales, in general in the other frame isocurvature perturbations continue to source the curvature perturbation. We also find that it is possible to realise a particular model in which curvature perturbations in both frames are conserved but with each being of different magnitude. These examples highlight that the curvature perturbation itself, despite being gauge-invariant, does not correspond directly to an observable. The non-equivalence of the two curvature perturbations would also be important when considering the addition of Standard Model matter into the system.Comment: 21 pages, 2 figures, references added, typos corrected, version to appear in JCA
    corecore