146 research outputs found

    Assessing water reservoirs management and development in Northern Vietnam

    Get PDF
    Abstract. In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this paper we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), and to evaluate the potential improvement by the adoption of a more sophisticated information system. To reach this goal we analyze the historical operation of the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River, explore re-operation options corresponding to different tradeoffs among the three main objectives (hydropower production, flood control and water supply), using multi-objective optimization techniques, namely Multi-Objective Genetic Algorithm. Finally, we assess the structural system potential and the need for capacity expansion by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation

    National-scale detection of reservoir impacts through hydrological signatures

    Get PDF
    Reservoirs play a vital role in the supply and management of water resources and their operation can significantly alter downstream flow. Despite this, reservoirs are frequently excluded or poorly represented in large-scale hydrological models, which can be partly attributed to a lack of open-access data describing reservoir operations, inflow and storage. To help inform the development of reservoir operation schemes, we collate a suite of hydrological signatures designed to detect the impacts of reservoirs on the flow regime at large-scales from downstream flow records only. By removing the need for pre-and-post-reservoir flow timeseries (a requirement of many pre-existing techniques), these signatures facilitate the assessment of flow alteration across a much wider range of catchments. To demonstrate their application, we calculate the signatures across Great Britain in 111 benchmark (i.e., near-natural) catchments and 186 reservoir catchments (where at least one upstream reservoir is present). We find that abstractions from water resource reservoirs induce deficits in the water balance, and that pre-defined flow releases (e.g., the compensation flow) reduce variability in the downstream flow duration curve and in intra-annual low flows. By comparing signatures in benchmark and reservoir catchments, we define thresholds above which the influence of reservoirs can be distinguished from natural variability and identify 40 catchments significantly impacted by the presence of reservoirs. The signatures also provide insights into local reservoir operations, which can inform the development of tailored reservoir operation schemes, and identify locations where current modeling practices (which lack reservoir representation) will be insufficient

    Technical Note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty

    Get PDF
    There is a general trend for increasing inclusion of uncertainty estimation in the environmental modelling domain. We present the CREDIBLE Uncertainty Estimation (CURE) Toolbox, an open source MATLABTM toolbox for uncertainty estimation aimed at scientists and practitioners that are not necessarily experts in uncertainty estimation. The toolbox focusses on environmental simulation models and hence employs a range of different Monte Carlo methods for forward and conditioned uncertainty estimation. The methods included span both formal statistical and informal approaches, which are demonstrated using a range of modelling applications set up as workflow scripts. The workflow scripts provide examples of how to utilise toolbox functions for a variety of modelling applications and hence aid the user in defining their own workflow: additional help is provided by extensively commented code. The toolbox implementation aims to increase the uptake of uncertainty estimation methods within a framework designed to be open and explicit, in a way that tries to represent best practice in applying the methods included. Best practice in the evaluation of modelling assumptions and choices, specifically including epistemic uncertainties, is also included by the incorporation of a condition tree that allows users to record assumptions and choices made as an audit trail log.</p

    Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins

    Get PDF
    The calibration of macroscale hydrological models is often challenged by the lack of adequate observations of river discharge and infrastructure operations. This modeling backdrop creates a number of potential pitfalls for model calibration, potentially affecting the reliability of hydrological models. Here, we introduce a novel numerical framework conceived to explore and overcome these pitfalls. Our framework consists of VIC-Res (a macroscale model setup for the Upper Mekong Basin), which is a novel variant of the Variable Infiltration Capacity (VIC) model that includes a module for representing reservoir operations, and a hydraulic model used to infer discharge time series from satellite data. Using these two models and global sensitivity analysis, we show the existence of a strong relationship between the parameterization of the hydraulic model and the performance of VIC-Res – a codependence that emerges for a variety of performance metrics that we considered. Using the results provided by the sensitivity analysis, we propose an approach for breaking this codependence and informing the hydrological model calibration, which we finally carry out with the aid of a multi-objective optimization algorithm. The approach used in this study could integrate multiple remotely sensed observations and is transferable to other poorly gauged and heavily regulated river basins.</p

    V2Karst V1.1: a parsimonious large-scale integrated vegetation–recharge model to simulate the impact of climate and land cover change in karst regions

    Get PDF
    Karst aquifers are an important source of drinking water in many regions of the world. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is often negligible. As a result, recharge in these systems may have a different sensitivity to climate and land cover changes than in other less permeable systems. However, little is known about the combined impact of climate and land cover changes in karst areas at large scales. In particular, the representation of land cover, and its controls on evapotranspiration, has been very limited in previous karst hydrological models. In this study, we address this gap (1) by introducing the first large-scale hydrological model including an explicit representation of both karst and land cover properties, and (2) by providing an in-depth analysis of the model's recharge production behaviour. To achieve these aims, we replace the empirical approach to evapotranspiration estimation of a previous large-scale karst recharge model (VarKarst) with an explicit, mechanistic and parsimonious approach in the new model (V2Karst V1.1). We demonstrate the plausibility of V2Karst simulations at four carbonate rock FLUXNET sites by assessing the model's ability to reproduce observed evapotranspiration and soil moisture patterns and by showing that the controlling modelled processes are in line with expectations. Additional virtual experiments with synthetic input data systematically explore the sensitivities of recharge to precipitation characteristics (overall amount and temporal distribution) and land cover properties. This approach confirms that these sensitivities agree with expectations and provides first insights into the potential impacts of future change. V2Karst is the first model that enables the study of the joint impacts of large-scale land cover and climate changes on groundwater recharge in karst regions.</p

    Making the most of data:An information selection and assessment framework to improve water systems operations

    Get PDF
    Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator’s experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control

    Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty

    Get PDF
    There is a general trend toward the increasing inclusion of uncertainty estimation in the environmental modelling domain. We present the Consortium on Risk in the Environment: Diagnostics, Integration, Benchmarking, Learning and Elicitation (CREDIBLE) Uncertainty Estimation (CURE) toolbox, an open-source MATLABTM toolbox for uncertainty estimation aimed at scientists and practitioners who are not necessarily experts in uncertainty estimation. The toolbox focusses on environmental simulation models and, hence, employs a range of different Monte Carlo methods for forward and conditioned uncertainty estimation. The methods included span both formal statistical and informal approaches, which are demonstrated using a range of modelling applications set up as workflow scripts. The workflow scripts provide examples of how to utilize toolbox functions for a variety of modelling applications and, hence, aid the user in defining their own workflow; additional help is provided by extensively commented code. The toolbox implementation aims to increase the uptake of uncertainty estimation methods within a framework designed to be open and explicit in a way that tries to represent best practice with respect to applying the methods included. Best practice with respect to the evaluation of modelling assumptions and choices, specifically including epistemic uncertainties, is also included by the incorporation of a condition tree that allows users to record assumptions and choices made as an audit trail log.</p
    corecore