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Abstract Advances in Environmental monitoring systems are making a wide range of data available at
increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time under-
standing of water systems conditions and to improve prediction of their future evolution, ultimately increas-
ing our ability to make better decisions. Yet, many water systems are still operated using very simple
information systems, typically based on simple statistical analysis and the operator’s experience. In this
work, we propose a framework to automatically select the most valuable information to inform water sys-
tems operations supported by quantitative metrics to operationally and economically assess the value of
this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a
multiobjective context, accounting for hydropower production and flood control. First, we quantify the
expected value of perfect information, meaning the potential space for improvement under the assumption
of exact knowledge of the future system conditions. Second, we automatically select the most valuable
information that could be actually used to improve the Hoa Binh operations. Finally, we assess the eco-
nomic value of sample information on the basis of the resulting policy performance. Results show that our
framework successfully select information to enhance the performance of the operating policies with
respect to both the competing objectives, attaining a 40% improvement close to the target trade-off
selected as potentially good compromise between hydropower production and flood control.

1. Introduction

In a rapidly changing context, where climate change and growing populations are straining freshwater
availability worldwide, using existing infrastructures more efficiently, rather than planning new ones,
becomes key to balance competing objectives and performance uncertainties, while minimizing invest-
ments and financial risk [Gleick and Palaniappan, 2010]. Many large storage projects worldwide have had
their operations designed in prior decades [U.S. Army Corps of Engineers, 1977; Loucks and Sigvaldason,
1982], with operating rules often conditioned on very simple information systems, such as inflow in the cur-
rent time period and previous release [Hejazi et al., 2008]. Under changing hydroclimatic and socioeconomic
forcing, the reluctance to adapt reservoirs operations to the new conditions [e.g., Sheer, 2010; Fernandez
et al., 2013; Giuliani et al., 2014a] has led many large-scale dams to fail in producing the level of benefits
that provided the economic justification for their development [e.g., Stone, 2011; Ziv et al., 2012; Ansar et al.,
2014].

The unprecedented ‘‘torrent of information’’ [The Economist Editorial, 2011] that is becoming increasingly
available to water system operators from pervasive sensor networks [e.g., Hart and Martinez, 2006], remote
sensing [e.g., Butler, 2007], cyberinfrastructure [e.g., Minsker et al., 2006], and crowdsourcing [e.g., Fraternali
et al., 2012], combined with the advances in data analytics and optimization techniques [e.g., Maier et al.,
2014], creates an opportunity for improving water systems operations in novel, unconventional ways, and
with minor investments. However, while this information might be useful to improve our understanding
and prediction of environmental processes, it also introduces observational errors and estimation biases
that challenge its optimal use.

In this paper, we propose a novel information selection and assessment (ISA) framework to support the effi-
cient use of observational data and improve water systems operations. The analysis of the value of informa-
tion explicitly quantifies potential losses from limited knowledge and uncertainty of current and future
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system conditions, and identifies the ‘‘best’’ information as the one leading to the greatest expected bene-
fits [Yokota and Thompson, 2004].

Our ISA framework is composed by three interconnected steps. We first compute the expected value of per-
fect information (EVPI), meaning the value of completely eliminating uncertainty from the decision-making
process [Yokota and Thompson, 2004]. In fact, a water resources system, such as a water supply distribution
system or a network of reservoirs, can be underperforming for a number of reasons, including structural lim-
itations in the system’s infrastructure [e.g., Castelletti et al., 2012] or in the institutional settings [e.g., Madani
and Lund, 2012; Giuliani and Castelletti, 2013; Anghileri et al., 2013], as well as the lack or inaccuracy of the
information (e.g., flow observations and/or forecasts) used to inform operational decisions. Our framework
focus on the latter and quantify the benefit that would be obtained if perfect information were available,
considering the multiple, potentially conflicting, operating objectives of the system under study as well as
their associated monetary value. The EVPI is estimated by the difference between the system performance
that could be obtained if perfect information were available and optimally used (upper bound solution) and
the system performance in an uninformed baseline alternative (lower bound solution) [Delqui�e, 2008]. A
positive EVPI indicates a potential benefit in collecting more information [Khader et al., 2013] and quantifies
the maximum price that a decision maker would be willing to pay to obtain such information.

Estimating the EVPI is useful to increase the system understanding and to support decision making in long-
term planning, for instance to prioritize investments in physical infrastructure versus investments in infor-
mation infrastructure. However, in real-time, uncertainty cannot be completely eliminated and perfect infor-
mation can remain unavailable. We therefore compute another measure, the expected value of sample
information (EVSI), which assesses the value of using the information actually available to the system opera-
tor when operational decisions are taken. For instance, for a reservoir system, perfect information would
include exact knowledge of future reservoir inflows, while sample information would include some other
observable quantities, such as current snowpack depth or upstream flows, which might be used to antici-
pate future inflows. The EVSI provides the value of reducing—but not eliminating—uncertainty [Yokota and
Thompson, 2004]. Determining the EVSI requires exploring two main questions: How can we select, among
the available information sources, the ones that more valuably contribute to the system operations? How
can the operating policy be re-designed to cater for the selected information? Addressing these two chal-
lenges will constitute the second and third step of our framework.

In the literature, numerous studies have focused on these questions by incorporating basic hydrologic infor-
mation, selected on the basis of operators’ experience, in a dynamic programming framework adopted for the
design of water reservoirs operations. Common choices have been the observations of previous period’s
inflows [e.g., Bras et al., 1983; Tejada-Guibert et al., 1995], simplified models of other hydrologic variables [e.g.,
Côt�e et al., 2011; Desreumaux et al., 2014], or streamflow forecasts [e.g., Stedinger et al., 1984; Karamouz and
Vasiliadis, 1992; Kim and Palmer, 1997; Faber and Stedinger, 2001; Maurer and Lettenmaier, 2004; Voisin et al.,
2006; Shukla et al., 2012; Oludhe et al., 2013; Li et al., 2014; Zhao et al., 2014]. As for the latter, the use of reliable
inflow forecasts is beneficial under most situations. Yet, its real value is often problem specific and depends
upon the system’s dominant dynamics and the objectives considered [You and Cai, 2008; Graham and Georga-
kakos, 2010]. For example, using short-term inflow forecasts generally improves reservoir operations for flood
control, [e.g., Castelletti et al., 2008a; Pianosi and Soncini-Sessa, 2009]. However, this improvement increases line-
arly with hydrologic uncertainty and decreases logarithmically with reservoir size [Hejazi et al., 2008]. For other
objectives, for instance water supply, medium and long-term streamflow forecasts would be needed. Yet,
while some works [e.g., Hamlet and Lettenmaier, 1999; Sharma, 2000; Block and Goddard, 2012; Zhao and Zhao,
2014] successfully extended the lead time of flow forecasts by using low-frequency climate phenomena (e.g.,
El Nino Southern Oscillation), in regions where the influence of these global phenomena is less intense (e.g.,
Europe or Africa), the quality of medium-long term streamflow forecasts is still relatively low [e.g., Hansen et al.,
2011; Sharma and Chowdhury, 2011; Alemu et al., 2011] and their use for improving reservoir operations less
beneficial. To overcome these limitations, in this paper we adopt an alternative approach and we investigate
the potential for using observational data (e.g., past and current rainfall, flow, water levels, etc., possibly at dif-
ferent time lags) in the operations of water resources systems by directly conditioning the operating policies
on observed variables without the intermediation of forecasting models (i.e., model-free).

Besides designing improved operating policies using the selected information, the third step of our ISA frame-
work aims also at determining quantitative approaches to estimate the EVSI by contrasting the performance
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of these policies with the upper and lower bound solutions. Moreover, we illustrate an approach to estimate
the economic value of using additional information. Since acquiring information requires money and time
[Sakalaki and Kazi, 2007], the economic EVSI expresses the willingness to pay of a water authority, expressed
as the maximum amount the water authority would pay to obtain the information required for the design
and implementation of the informed operating policies [e.g., Alberini et al., 2006].

In summary, this paper provides three main methodological contributions: (i) we propose a procedure to
automatically select the most valuable information to inform water systems operations; (ii) we provide met-
rics to quantitative and economically assess the value of this information; (iii) we describe computational
tools to directly embed this information into the operating policies in a model-free fashion, i.e., with no
need of a forecasting model.

The paper is organized as follows: the ISA framework is described in the next section. Section 3 reviews
some numerical methods that can be adopted to perform the different steps of the procedure. Section 4
introduces the Hoa Binh case study application used to demonstrate the potential for the proposed ISA
framework. The Hoa Binh is a large reservoir on the Red River in Vietnam, mainly operated for hydropower
production and flood control. This case study has been chosen for its medium-complexity, which means
that it provides a realistic assessment of the proposed framework while also allowing for a physically mean-
ingful interpretation of the results. Numerical results are reported in section 5, and final remarks and issues
for further research are presented in the last section.

2. General Framework

2.1. Problem Statement
We consider a general multiobjective water reservoir operations problem of the following form:

max
u½0;H21�

Jðx½0;H�;u½0;H21�; e½1;H�Þ (1a)

subject to

xt115ftðxt;ut; et11Þ t50; :::;H21 (1b)

x0; e½1;H� given (1c)

where

1. ut is the vector of release decisions at each time step t50; . . . ;H21 over the evaluation horizon [0,H].
2. J(�) is the objective function vector, which accounts for K operating objectives (to be maximized) eval-

uated over the horizon H. As shown in equation (1a), the objective values depends on the sequence of
release decisions u½0;H21�, the trajectory of the external drivers e½1;H� (e.g., reservoir inflows), and the result-
ing trajectory of the state vector x[0,H] (e.g., reservoir storage). The model used for describing the external
drivers e½1;H� depends on the problem formulation as discussed in the next sections.

3. f(�) is the transition function of the system (e.g., reservoirs’ water balance and flow-routing), whose recur-
sive application allows the dynamic simulation of the system’s evolution in time. In the adopted notation,
the time subscript of a variable indicates the time instant when its value is deterministically known. The
reservoir storage is measured at time t and thus is denoted as xt, while inflow in the interval [t,t 1 1) is
denoted as et11 because it can be known only at the end of the time interval.

The ISA framework is composed by the three main building blocks illustrated in Figure 1, which are
described one by one in the following sections. Note that the ISA framework should be applied in an itera-
tive fashion until the performance of the designed operating policy meets the level of performance required
by the decision makers or when adding new information does not further improve the system performance.

2.2. Quantifying the Expected Value of Perfect Information
We define the Expected Value of Perfect Information (EVPI) as the performance improvement that could be
achieved under the assumption of perfect foresight on the future at the moment when operational deci-
sions must be taken. The optimal sequence of release decisions (uPOP

½0;H21�) that an ideal operator would have
followed having perfect information on the future is obtained by solving Problem (1) with the trajectory
e½1;H� of the external drivers deterministically known over the entire evaluation horizon H. The assumption of
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perfect (deterministic) knowl-
edge of the future external driv-
ers implies that this solution is
designed as an open loop oper-
ating policy. However, this
sequence of optimal release
decisions is conceptually equiv-
alent to a closed loop operating
policy conditioned on the cur-
rent system conditions, repre-
sented by the time instant t and
the state vector xt [Bertsekas,
1976], along with perfect infor-
mation on the future. In fact,
the decision vector ut at each
time t is an implicit function of
the current state vector xt and
of the sequence of future exter-
nal drivers e½t11;H�, assumed to
be perfectly known at time t
(Figure 2a). We call Perfect
Operating Policy (POP) such a
reconstructed optimal solution.

The POP performance (JPOP) is
an absolute measure of the sys-
tem performance, which is not
completely meaningful as it
depends on the characteristics
of the system under study, for
instance the reservoir capacity-
inflow ratio. As a consequence,
the EVPI has to be estimated by
comparing JPOP with the value
of the objective functions that
could be obtained, over the
same evaluation horizon, by a
poorly informed operating pol-
icy (i.e., Basic Operating Pol-
icy—BOP) relying on a basic set
of information. For example, we
can consider the so called
release plan [e.g., Soncini-Sessa

et al., 2007], which means an open loop operating policy that depends only on the day of the year (i.e.,
ut5BOPðtÞ) and no information on the future external drivers. In case of a single-objective problem, the
EVPI is given by the difference JPOP2JBOP between the (scalar) performance of the POP and BOP. In the mul-
tiobjective case, the objective functions JPOP and JBOP are vectors and the estimation of the EVPI is more
complex. Quantitative metrics to estimate the EVPI from the comparison of vector objective functions are
presented in section 3.4. In both cases, a positive and sufficiently large EVPI indicates a potentially signifi-
cant benefit from using more information to improve the operations of the system, whereas a small EVPI
suggests that improvement of the Basic Operating Policy would have limited effect.

2.3. Information Selection
When the EVPI is large, in order to close the gap between POP and BOP, we need to identify a set of sample
information It, observable at time t, that can act as an effective surrogate of the sequence of future external

Figure 1. Schematization of the Information Selection and Assessment (ISA) framework.
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drivers and characterizes as much
accurately as possible the optimal
sequence of release decisions uPOP

½0;H21�.
In principle, streamflow forecasts can
be considered in this step as candidate
information. However, according to
our model-free approach, we prefer to
select information from observed vari-
ables only.

The set Nt of candidate variables hence
comprises any exogenous variable (i.e.,
variables that are observed but are not
endogenous in the problem formula-
tion and hence are not modeled) such
as observed rainfall, flows, water levels,
etc. at various locations within the sys-
tem and, possibly, at different time
lags or integrated over different peri-
ods. The first problem to address is
how to efficiently select the smallest
subset of variables It � Nt carrying the
most valuable information. Since the
set of candidate exogenous variables
Nt can be rather vast, comprising
redundant and collinear variables, a
numerical procedure may help to
tackle the problem.

To this end, we suggest to support this
selection by adopting automatic meth-

ods capable of identifying the sub-set of variables It � Nt that better explain the optimal sequence of
release decisions uPOP

½0;H21�. This sequence characterizes the optimal operations of the system in the ideal case
of perfect knowledge of the future conditions. Several methods can be adopted to solve such information
selection problem, such as cross-correlation or mutual information analysis, or more complex input variable
selection techniques. Technical details about these methods are further discussed in section 3.2.

2.4. Assessing the Expected Value of Sample Information
Once we have selected the best surrogate It of the future external drivers, the next step is to design the
Improved Operating Policy (IOP) that uses this surrogate information to inform operational decisions. The
IOP is a closed loop operating policy that provides the decision vector as a function of the information avail-
able at time t, i.e., ut5IOPðt; xt; ItÞ (Figure 2b).

Two alternative approaches are available to design the IOP: (i) to identify a dynamic model describing each
component of It and use the states of these models to condition the operating policies within a dynamic
programming framework [e.g., Tejada-Guibert et al., 1995; Desreumaux et al., 2014]; (ii) to adopt approximate
dynamic programming methods [see Powell, 2007, and references therein], which allow the direct, model-
free use of exogenous information in conditioning the operating policies [e.g., Faber and Stedinger, 2001;
Castelletti et al., 2010, 2013; Giuliani et al., 2015]. The technical details about these methods are discussed in
section 3.3. Notice that also the Basic Operating Policy can be designed by adopting the same approach by
conditioning the decisions only on the time information.

In general, we expect the IOP to fill the performance gap between the upper and lower bound solutions
(i.e., the POP and BOP) and, possibly, to produce a performance JIOP as close as possible to JPOP. However,
since the relative contribution of each component of It to the IOP performance might not be equivalent to
the relative contribution in explaining the optimal sequence uPOP

½0;H21�, we suggest to apply the ISA procedure
in an iterative fashion (see Figure 1). At first, we consider only the candidate variable in Nt with the highest

Figure 2. (a) Different use of information for making decisions under the Perfect
Operating Policy, assuming perfect information on the future is available, and (b)
under the Basic and Improved Operating Policies, assuming only the information
actually available at the time instant of the decision is used.

Water Resources Research 10.1002/2015WR017044

GIULIANI ET AL. INFORMATION SELECTION AND ASSESSMENT FRAMEWORK 9077



ability in explaining the optimal sequence uPOP
½0;H21�, assuming that it also has the highest potential to

improve reservoir operations. We design an Improved Operating Policy conditioned on this variable only,
and estimate the corresponding EVSI by comparison with the POP and BOP performance. We then iterate
the procedure by incrementally adding variables to the surrogate information vector It, designing the asso-
ciated IOP, and evaluating the corresponding EVSI. When either the attained performance is satisfactory or
the marginal improvement in the EVSI between two consecutive iterations is negligible, the procedure
ends.

Again, in case of a single-objective problems, the EVSI is simply obtained as the difference between the
(scalar) performances JPOP and JIOP (possibly scaled by the basic performance JBOP). In the multiobjective
case, where the objective functions JPOP and JIOP are vectors, the EVSI can be estimated by means of the
quantitative metrics described in section 3.4.

3. Methods and Tools

In this section, we provide a short overview of the methods and tools that are available to perform the main
steps of the ISA framework illustrated in the previous section.

3.1. Design of the Perfect Operating Policy
The Perfect Operating Policy can be reconstructed over a historical horizon by solving Problem (1) and
assuming the sequence e½1;H� is known. This is a standard nonlinear optimization problem and can be solved
by either a local optimization method (e.g., gradient-based) or a global optimization method (e.g., direct
search). Alternatively, if the objective function is time-separable, deterministic dynamic programming (DDP)
can be used [Bellman, 1957]. Due to computational constraints, DDP can be applied only when the number
of state and decision variables is sufficiently small (in the order of few units). When applicable, however,
DDP provides an almost exact solution in a much more efficient fashion than other nonlinear optimization
methods.

3.2. Automatic Selection of Information
The selection of the most valuable information to be used as a surrogate of the trajectory of future external
drivers is reformulated here as the problem of finding the subset of variables It � Nt that, together with t
and xt, mostly explain the optimal sequence uPOP

½0;H21�, which is obtained in the first step of our procedure.
The rationale for including t and xt, which are not exogenous variables, is technical and aims to remove the
part of the optimal sequence signal they explain. This facilitates the emergence of informative exogenous
variables, which can be used in combination with t and xt in the design of the Improved Operating Policies.

Especially when the number of candidate input variables is high, statistical techniques may help to perform
the selection process in an automatic, reproducible way. While a standard cross-correlation analysis may fail
in the presence of strongly nonlinear causal relationships, input variable selection (IVS) techniques can be
used. IVS problems arise every time a variable of interest (i.e., the optimal sequence uPOP

½0;H21�) has to be mod-
eled as a function of a subset of potential explanatory variables (i.e., the exogenous variables It � Nt), but
there is uncertainty about which subset to use among a number, usually large, of candidate variables avail-
able, which are often characterized by redundancy, collinearity, and highly nonlinear relationships [see
Galelli et al., 2014, and references therein].

In the choice of the appropriate IVS method, three desirable features should be considered: (i) modeling
flexibility, so to approximate strongly nonlinear functions, particularly because the functional relationship
between the candidate inputs and the output uPOP

½0;H21� is usually unknown a priori; (ii) computational effi-
ciency, so to deal with potentially large data sets, when considering long-time series of observations and
many candidate variables; and (iii) scalability with respect to the number of candidate input variables, so to
handle numerous input variables with a different range of variability.

According to the guidelines provided in Galelli et al. [2014], in this paper, we use the hybrid model-based/
model-free Iterative Input Selection (IIS) algorithm [Galelli and Castelletti, 2013a] combined with extremely
randomized trees [Geurts et al., 2006; Galelli and Castelletti, 2013b], which possesses all the three properties
discussed above. Given the output variable to be modeled uPOP

t and the set of candidate exogenous varia-
bles Nt, the IIS algorithm first ranks these latter with respect to a statistical measure of significance and adds
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only the best performing input I�t to the set of selected variables It. This operation aims to avoid the inclu-
sion of redundant variables, as one an input is selected, all the inputs highly correlated with it may become
useless in the next iterations. Then, the algorithm identifies a model of uPOP

t with input It, namely
uPOP

t 5m̂ðItÞ, and computes the corresponding model performance with a suitable distance metric (e.g., the
coefficient of determination) as well as the model residuals, which become the new output at the next itera-
tion. The algorithm stops when the best variable returned by the rank is already in the set It, or when over-
fitting conditions are reached. Further details on the IIS algorithm are provided in supporting information.

3.3. Design of the Improved Operating Policies
The use of traditional optimization techniques based on dynamic programming (DP) to design operating
policies conditioned also on the selected information It might be limited by the so-called curse of modeling
[Tsitsiklis and Van Roy, 1996]. DP indeed requires a model-based approach, where any information used to
condition the operating policy must be explicitly modeled to fully predict the one-step ahead system transi-
tion used in the estimation of the value function. This information can be described either as a state variable
of a dynamic model or as a stochastic disturbance, independent in time, with an associated pdf. As a conse-
quence, exogenous information cannot be explicitly considered in conditioning the decisions, unless a
dynamic model is identified for each additional variable, thus adding to the curse of dimensionality. The
computational cost of DP indeed grows exponentially with the state vector dimensionality [Bellman, 1957]
and, consequently, DP is not applicable when the dimensionality of the system exceeds two or three sto-
rages [Loucks et al., 2005; Castelletti et al., 2008b]. Moreover, the more complex the relationship between
the exogenous variables (e.g., spatially correlated inflows), the lower will be the accuracy of the model and
therefore its contribution toward improving the operating policy’s performance.

To reduce the limiting effects of both the curse of modeling and the curse of dimensionality, we therefore
need an approximate dynamic programming method that: (i) is scalable with respect to the state-decision
space, thus overcoming the curse of dimensionality; (ii) is able to deal with a potentially large number of
variables, possibly with different ranges of variability, and (iii) allows conditioning the operating policy on
any exogenous information in a model-free fashion, namely without the need of explicitly modeling the
temporal dynamics of these variables (thus overcoming the curse of modeling).

In the case study application, we adopt a policy search method [see Deisenroth et al., 2011, and references
therein], as it represents a promising approach which possesses all the three properties discussed above.
Policy search methods rely on a simulation-based optimization approach that first parameterizes the oper-
ating policy within a given family of functions and, then, optimizes the policy parameters (i.e., the decision
variables of the problem) with respect to the operating objectives of the problem. This approach can be
combined with any simulation model and allows the direct use of exogenous information available at time
t to condition the decisions ut. In addition, this approach can be effectively combined with multiobjective
evolutionary algorithms when the problem is characterized by high-dimensional decision spaces, noisy and
multimodal objective functions, and multiple, competing operating objectives [Giuliani et al., 2015]. The
mathematical formulation of the optimization problem solved by policy search is given in supporting infor-
mation. In our case study application, the policy search approach was used also to design the Basic Operat-
ing Policy, by conditioning the decisions on the time information only.

3.4. Metrics to Assess the Value of Information
The quantification of the value of information for the analysis of both the EVPI and the EVSI is straightfor-
ward in single-objective problems, where it can be easily measured as the difference in the values of the
(scalar) objective function considered. However, the majority of water resources management problems
involves multiple competing objectives [e.g., Kasprzyk et al., 2009; Giuliani et al., 2014b]. Each operating pol-
icy is therefore associated to a vector J5½J1; . . . ; JK � of K different objectives, making the evaluation of the
performance improvement more challenging. The solution of a multiobjective problem is indeed not
unique, but rather a set of Pareto optimal (or approximate) solutions.

According to Zitzler et al. [2000], assessing the effectiveness of multiobjective problems’ solutions requires
to evaluate: (i) the distance of the final solutions from the true Pareto front; (ii) the coverage of the nondo-
minated space; and (iii) the extent of the nondominated front. Among the commonly used metrics adopted
in the literature [see Maier et al., 2014, and references therein], in this work we use the hypervolume
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indicator HV as it captures both convergence and diversity [Zitzler et al., 2003]. The hypervolume measures
the volume of objective space dominated by an approximation set, with HV calculated as the difference in
hypervolume between the best known Pareto optimal front (i.e., the set of POPs) and the considered
approximation set (i.e., BOPs or IOPs), see Figure 3a. This metric allows for set-to-set evaluations, where the
Pareto front with the higher HV is deemed the better.

The evaluation of the value of information should not be limited to the analysis of the whole Pareto front
by means of HV. In fact, some information may be relevant for one (or few) objectives, whereas having no
influence on other objectives. For example, precipitation measurements in the upstream catchment are
potentially valuable for flood protection, while their role decreases for long-term objectives such as irriga-
tion supply. As a consequence, adding information can alter the trade-off curve by producing a limited
increase of HV but a significant improvement in a single objective, reducing the gap from some target opti-
mal solutions.

To account for the specific advance toward a prespecified target solution, we introduce two additional met-
rics. The first metric measures the proximity between the target solution JPOP;ref

and the closest point of the
Pareto front under exam, see Figure 3b, i.e.,

Dmin5 min
i51;:::;N

jjJPOP;ref
2Ji jj (2)

where jj � jj stands for the (normalized) Euclidean norm, N is the number of points in the Pareto front under
exam, and Ji is the objective vector representing the i-th point in such Pareto front. The lower Dmin, the bet-
ter the Pareto optimal set under exam. Since Dmin is a point-to-point metric, achieving a good (small) value
of Dmin requires only a single solution in the Pareto optimal set close to the target solution.

The second metric, instead, is a set-to-point evaluation, which measures the average distance of the entire
Pareto front under exam from the target POP, see Figure 3c, i.e.,

Davg5
1
N

XN

i51

jjJPOP;ref
2Jijj (3)

Again, the lower the value of Davg, the better the set of Pareto optimal solutions under exam. The underly-
ing idea is that the potential changes in the trade-offs curve produced by the additional information may
also modify the structure of preferences of the decision maker. In this case, he/she might be interested in
obtaining not only a single solution very close to the target POP but also a set of solutions around the target
so to explore the new trade-offs generated by using the additional information.

4. The Hoa Binh Reservoir Case Study

The Hoa Binh reservoir system (Figure 4) is a multipurpose regulated reservoir in the Red River basin (Viet-
nam). The Red River is the second largest basin of Vietnam and is shared by China (48%), Vietnam (51%),
and the rest in Laos. It has three major tributaries, namely the Da River, the Thao River, and the Lo River.
The Da River is the most important water source, contributing for 42% of the total discharge that enters in
the downstream part of the basin, ultimately flowing through the capital city of Hanoi. The Hoa Binh

Figure 3. Illustration of the proposed metrics for assessing the value of information in multiobjective problems.
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reservoir, constructed on the Da River, has a surface area of about 198 km2 and an active storage capacity
of about 6 billion m3. Given this large storage capacity, the Hoa Binh regulation plays a key role for flood
mitigation in the downstream part of the Red River catchment and, especially, in the Hanoi metropolitan
area, where 6.5 million of people live. The Hoa Binh reservoir is also connected to a power plant equipped
with eight turbines, for a total design capacity of 1920 MW, which corresponds to the 19% of the installed
national hydropower capacity and contributes a large share of the national electricity production.

4.1. Model
The system is modeled by a combination of conceptual and data-driven models with a daily time resolution.
The dynamics of the Hoa Binh reservoir is described by the mass balance equation of the water volume st

stored in the reservoir, i.e.

st115st1qDa
t112rt11 (4)

where st is the reservoir storage, qDa
t11 is the net inflow in the interval [t,t 1 1) (obtained by mass balance

inversion), and rt11 is the volume released in the same interval. The release is defined as rt115f ðst; ut; qDa
t11Þ,

where f(�) describes the nonlinear, stochastic relation between the decision ut, and the actual release rt11

[Piccardi and Soncini-Sessa, 1991]. The release rt11 coincides with the release decision ut unless a correction
is needed in order to take into account the legal and physical constraints on the reservoir level and release,
including spills when the reservoir level exceeds the maximum capacity.

The electricity production of the hydropower plant is determined by a function of the simulated reservoir
release rt11 and the net hydraulic head (i.e., reservoir level minus tailwater level). The water level in Hanoi is
estimated by a flow routing model consisting of a data-driven feedforward neural network fed by the Hoa
Binh release (rt11), the discharge from the Thao River, measured at Yen Bai (qYB

t11), and the discharge from
the Lo River, measured at Vu Quang (qVQ

t11). Further details about the model of the Hoa Binh system and its
operations can be found in Castelletti et al. [2012]; Pianosi et al. [2012]; and Castelletti et al. [2013].

The two main objectives of the Hoa Binh regulation are hydropower production and flood control. They are
formalized as follows:

Figure 4. Map of the Red River basin.
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1. Hydropower production (Jhyd): the daily average hydropower production (kWh/d) at the Hoa Binh hydro-
power plant, to be maximized, defined as

Jhyd5
1
H

XH21

t50

HPt11

with HPt115 ggcw
�ht qTurb

t11

� �
� 1026

(5)

where g is the turbine efficiency, g 5 9.81 (m/s2) the gravitational acceleration, cw 5 1000 (kg/m3) the
water density, �ht (m) the net hydraulic head (i.e., reservoir level minus tailwater level), and qTurb

t11 (m3/s)
the turbined flow;

2. Flood damages (Jflo): the daily average excess level hHanoi
t11 (cm2/d) in Hanoi with respect to the flooding

threshold �h 5 950 cm, to be minimized, defined as

Jflo5
1
H

XH21

t50

maxðhHanoi
t11 2�h; 0Þ2 (6)

where hHanoi
t11 is the level in Hanoi estimated by the ANN flow routing model, which depends on the Hoa

Binh release (rt11) along with the Thao (qYB
t11) and Lo (qVQ

t11) discharges.

In summary, our model is composed by two competing objectives, one state variable representing the Hoa
Binh storage st, one release decision ut, and a vector of uncontrolled external drivers comprising the three
inflows qt115½qDa

t11; qYB
t11; qVQ

t11�. The same model is used in all the steps of the framework for contrasting the
performance of the Perfect, Basic, and Improved Operating Policies. Although this system represents a rela-
tively simple problem, the presence of multiple inflows combined the lack of reliable forecasts due to the
missing information on the upstream Chinese part of the catchment makes the case study particularly suita-
ble for demonstrating the potential of our ISA framework, while being sufficiently well understood to also
allow for a robust interpretation of the results. In addition, two of the three inflows are located downstream
with respect to the Hoa Binh reservoir and do not impact on the reservoir dynamics and on the hydropower
production. Yet, they contribute more than 50% of the flow in the downstream part of the system, thus
reducing the buffer potential of the Hoa Binh reservoir during the monsoon season, ultimately increasing
the risk of flood in Hanoi.

4.2. Experiment Setting

1. Observational data: time series of rainfall, temperature, and streamflow at various locations in the catch-
ment and rivers network are available at daily resolution starting from the 1950s. Starting from the late
1980s and following the construction of the Hoa Binh reservoir, which was completed in 1994, time
series of reservoir levels, releases, and net inflows are also available. Since the full reservoir operations
started only in 1995 (when it was completely filled up), we consider the time horizon 1995–2006 as in
Castelletti et al. [2012] to demonstrate and validate our framework. This time horizon is used for both the
optimization and evaluation of the policy performance, thus ensuring that the Perfect Operating Policies
represent the upper bound in terms of system performance. In particular, the approximate the values of
Jhyd and Jflo, which would require to simulate the system under an infinite number of disturbance realiza-
tions, each of infinite length, by computing the sample average value using the 12 years time series of
the historical disturbances [see Pianosi et al., 2011 and discussion in supporting information].

2. Perfect Operating Policies: the set of POPs was designed via Deterministic Dynamic Programming, with an
11 years management horizon from 1995 to 2006. The weighting method [Gass and Saaty, 1955] is used
to convert the 2-objective problem into a single-objective one via convex combination. Eleven combina-
tions of weights were evaluated in this study as they provide a good exploration of the trade-offs curve.

3. Improved Operating Policies: the set of IOPs was designed via evolutionary multiobjective direct policy
search (EMODPS), a simulation-based optimization approach which overcomes the limitations of DP fam-
ily methods by combining direct policy search, nonlinear approximating networks, and multiobjective
evolutionary algorithms [Giuliani et al., 2015]. In particular, it allows the direct use of exogenous informa-
tion in conditioning the decisions as well as the estimation of an approximation of the Pareto front in a
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single run of the optimization algorithm. The drawback of this method is that it is a heuristic approach
and there is no theoretical guarantee on the optimality of the resulting solutions. Their accuracy strongly
depends on the choices of the class of functions used to parameterize the operating policy and on the
efficiency of the algorithm used to optimize the policy parameters. In this work, we use Gaussian Radial
Basis Functions (RBFs) to parameterize the operating policy as they are capable of representing functions
for a large class of problems [e.g., Mhaskar and Micchelli, 1992; Busoniu et al., 2011] and have been dem-
onstrated to be more effective than other universal approximators [Giuliani et al., 2014c,2015]. The num-
ber of basis of the RBFs is set equal to N 5 M 1 1, where M is the dimension of the policy input vector
I t5ðt; xt; ItÞ. The corresponding number of policy parameters to be optimized is nh5Nð2M11Þ. To per-
form the optimization, we use the self-adaptive Borg MOEA [Hadka and Reed, 2013], which has been
shown to be highly robust across a diverse suite of challenging multiobjective problems, where it met or
exceeded the performance of other state-of-the-art MOEAs [Hadka and Reed, 2012; Reed et al., 2013].
Since the Borg MOEA has been demonstrated to be relatively insensitive to the tuning parameters, we
use the default algorithm parameterization suggested by Hadka and Reed [2013], overcoming the limita-
tions of tuning the algorithm parameters to the specific problem. Each optimization was run for 250,000
function evaluations, with the simulation of the system performed over the same horizon of DDP (i.e.,
1995–2006). To improve solution diversity and avoid dependence on randomness, the solution set from
each formulation is the result of 20 random optimization trials. The final set of Pareto optimal policies for
each experiment is defined as the set of nondominated solutions from the results of all the optimization
trials.

4. Basic Operating Policies: the set of BOPs is defined as a set of open-loop policies conditioned only on the
day of the year (i.e., release plans), designed via EMODPS as the Improved Operating Policies. We do not
consider the historical policy of the Hoa Binh as a benchmark for the following reasons: our model con-
siders only two objectives, while in reality the Hoa Binh reservoir has been regulated also for irrigation
supply and for ensuring navigation in the Red River delta; the historical regulation before 1995 was also
conditioned by the fact that reservoir filling was not complete, while after 2005 it was also affected by
the undergoing construction of Son La reservoir upstream of the Hoa Binh.

5. Automatic selection of information: the identification of the most relevant information was carried out by
using the hybrid model-based/model-free Iterative Input Selection (IIS) algorithm [Galelli and Castelletti,
2013a]. The IIS was run on a sample data set comprising the day of the year (t), the Hoa Binh storage (st),
and a set Nt including 12 exogenous variables: the Hoa Binh net inflow (qDa

t ), the spatial average precipi-
tation in the Da River catchment (~P

Da
t ), flows (qi

t) and precipitations (Pj
t) measured at different locations

(i 5 Ta Bu, Lai Chau, Nam Giang, Yen Bai, Vu Quang and j 5 Muong Te, Tam Duong, Bao Lac, Bac Me, Ha
Giang, see Figure 4).

5. Results

5.1. Quantifying the EVPI
The first step of the ISA framework (Figure 1) is the estimation of the Expected Value of Perfect Infor-
mation by contrasting the Perfect Operating Policies (POPs) and the Basic Operating Policies (BOPs).
Figure 5a shows the performance of the POPs (represented by black squares) evaluated over the hori-
zon 1995–2006. In the same figure, the red points represent the performance of the BOPs, while the
performance of the Improved Operating Policies (i.e., blue, green, magenta points) will be discussed
later on in section 5.2. The arrows indicate the direction of increasing preference, with the best solu-
tion located in the top-left corner of the figure. Visual comparison of the Pareto fronts shows that the
potential space for improvement generated by the knowledge of perfect information of the future
inflows trajectories, which is available in the problem formulation of the POPs and not in the BOPs’
one, is relevant in terms of both the operating objectives (see the area between the black squares and
the red points).

According to the shape of the resulting Pareto front, we focus the analysis on a single target Perfect Operat-
ing Policy, which represents a potentially good compromise between Jhyd and Jflo. Beyond representing a
good target solution, previous works [Castelletti et al., 2012] have shown that this compromise solution is
particularly difficult to be translated into an actual operating policy. In fact, while the two extreme policies
that would optimize the two single objectives separately are relatively simple to design (hydropower
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production is easily maximized by maintaining the release equal to the turbine capacity, whereas flood
protection is maximized by maintaining the reservoir level as low as possible outside flood events),
designing the compromise policy that would ensure adequate flood protection while simultaneously
maintaining high hydropower production is particularly challenging. This observation is confirmed in Fig-
ure 5a, where the two extremes of the red Pareto front are not far from the corresponding solutions in
the POPs’ set, while the maximum distance between the two fronts is located in correspondence with

Figure 5. Comparison of the performance obtained by Perfect Operating Policies, Basic Operating Policies, and three Improved Operating
Policies conditioned on increasing information (i.e., time and storage in blue; time, storage, streamflow at Vu Quang in green; time, stor-
age, streamflow at Vu Quang, streamflow at Ta Bu in magenta). (a) Shows the policies’ performance in the objective space, (b–d) report
the value of information quantified by the three metrics introduced in section 3.4.
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the selected target solution. This motivates searching for a set of Improved Operating Policies (IOPs)
that can fill in such space.

A more quantitative assessment of the EVPI is provided by the values of the three metrics introduced in sec-
tion 3.4, where the POPs represent the optimal front and JPOP;ref is the target POP. Figure 5b shows that the
difference in the hypervolume indicator between the Basic Operating Policies and the POPs is 0.62, which
confirms the large gap between the set of perfect and basic operating policies. In addition, the BOPs fail in
exploring the trade-offs region around the target solution, attaining large values in both Dmin and Davg (Fig-
ures 5c and 5d).

5.2. Information Selection
The second step of the ISA framework (Figure 1) aims at identifying the best subset of information It � Nt

that can be used together with the day of the year t and the state vector xt in the design of IOPs. As antici-
pated, we used the IIS algorithm to select the most relevant information to explain the optimal sequence of
release decisions uPOP

½0;H21� from a sample data set of 12 candidate exogenous variables, along with the day of
the year (t) and the Hoa Binh storage (st). The rationale for including these latter is to avoid the selection of
exogenous variables correlated with t or st, which might be ineffective as surrogates of the future external
drivers.

Figure 6a reports the results of 50 runs of the IIS algorithm using a parallel axes plot. The repetition of the
experiments aims at filtering the randomness associated to the construction of the extra-trees models used
by the IIS algorithm [Galelli and Castelletti, 2013a]. In this representation, each variable is represented as a
line (also identified by the different colors) crossing the three axes at the values of the corresponding per-
formance in terms of frequency of selection, average position, and average relative contribution over the 50
runs. In the plot, the reported performance is normalized between their minimum and maximum values
and the axes are oriented so that the direction of preference is always upward. Consequently, the most rele-
vant variables would be represented by horizontal lines running along the tops of all of the axes, meaning
variables that are selected with high frequency, in the first positions, and with the largest relative
contributions.

The results in Figure 6a show limited variability over the 50 runs: the three variables providing the highest
relative contributions (i.e., t, st, and qVQ

t ) are selected in all the 50 runs in the same positions. Figure 6b
shows the average performance attained by the regression model in describing the optimal release deci-
sions sequence uPOP

½0;H21�, measured in terms of cumulated coefficient of variation (R2). From these results, we

Figure 6. Information selection results obtained via 50 runs of the IIS algorithm: (a)for each candidate variable, the frequency of selection, the average position, and the average relative
contribution (t is day of the year; st is the Hoa Binh storage, qi and Pi are measured flow and precipitation at different stations reported in Figure 4); (b) the average cumulated perform-
ance of the regression model describing the optimal decisions sequence uPOP

½0;H21� .
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tentatively stop the selection of the relevant information at the first four selected variables because they
allow explaining a sufficiently high percentage of the output variance (i.e., R2 5 75%). The four variables
selected, namely day of the year (t), Hoa Binh storage (st), streamflow at Vu Quang (qVQ

t ), and streamflow at
Ta Bu (qTB

t ), are the ones represented by solid lines in Figure 6a. Another potentially relevant variables might
be the flow at Yen Bai (qYB

t ), which is selected in all the runs in the fifth position (while qTB
t is selected in

fourth position in 46 over 50) and provides the fifth highest contribution. However, the high correlation
between the flow in the Thao River with the ones in the Da (86.9%) and Lo (79.8%), and the minor contribu-
tion of the Thao River to the flow in Hanoi (i.e., around 19%, while the Da and Lo rivers account for 42% and
25.4%, respectively) are likely reducing the value of qYB

t . The need to consider also qYB
t to better condition

the Hoa Binh operations will be determined on the basis of the resulting performance of the operating poli-
cies conditioned on the four selected inputs. Finally, it is worth noting that when qTB

t is not selected, it is
actually replaced by the flow at Lai Chau (qLC

t ). This latter is still a measure of the flow in Da River, observed
upstream with respect to Ta Bu station (see Figure 4), and it is likely highly correlated with qTB

t .

The selection of this set of variables is interesting at least with two respects: (i) the Hoa Binh inflow (qHB
t ) is

never selected, probably because the optimal operations of the reservoir requires some forms of anticipa-
tion to effectively face the inflow dynamics, which is better captured by observations in the upstream part
of the Da River catchment (e.g., flow at Ta Bu); (ii) the flow in the Lo River at Vu Quang (qVQ

t ) is selected
before the one in the Da River at Ta Bu (qTB

t ), meaning that the information on the uncontrolled part of the
system is more relevant for flood protection in Hanoi than a refined predictions of the reservoir inflow.

5.3. Improved Operating Policies and Assessment of the EVSI
In this section, we incrementally add the variables selected by the IIS algorithm to the set of policy input
and we iteratively design and analyze the resulting Improved Operating Policies both in terms of their per-
formance with respect to the two operating objectives (i.e., Jhyd and Jflo) and to the associated Expected
Value of Sample Information (step 3 of the ISA framework, see Figure 1).

The first variable selected is the day of the year (t). This is not surprising given the strong influence of the
seasonality and of the monsoon period on the system dynamics. The set of policies conditioned on the day
of the year is the already discussed set of Basic Operating Policies, represented by the red points in Figure
5a. The second selected variable is the Hoa Binh storage (st). The associated Improved Operating Policies
IOP(t,st) are represented by blue points. It is worth noting that the set (t,st) is the minimum information gen-
erally used for the design of closed loop operating policies [Bertsekas, 1976]. The comparison of the per-
formance of BOP(t) and IOP(t,st) shows a large contribution associated to the Hoa Binh storage,
demonstrating the advantage of closing the loop between operational decisions and evolving system con-
ditions. A quantitative evaluation of the EVSI is given by the metrics reported in Figure 5b: HV increases
from 0.38 to 0.57 (i.e., 150%) when moving from BOP(t) to IOP(t,st), while Dmin and Davg decrease from 0.53
to 0.34 (i.e., 235%) and from 0.59 to 0.46 (i.e., 222%), respectively. While the large increase of HV suggests
a general improvement of the Pareto front enhancing both the objectives, the changes in the other two
metrics are relatively smaller. This means that conditioning the Hoa Binh policy on the reservoir storage is
not sufficient to approach the specific target POP solution (Figure 5a, black square). These results motivate
for further improving the operating policy by introducing additional information to better anticipate the
monsoon season and reduce flooding in Hanoi.

The third variable selected is the previous day flow in the Lo River measured at Vu Quang (qVQ
t ). The result-

ing performance of the new set of policies IOP(t; st; qVQ
t ) is represented in Figure 5a by green points. Results

show that the marginal improvement obtained by adding qVQ
t is lower than the one obtained by including

the Hoa Binh storage (st). However, although the maximum of hydropower production is almost the same,
the green solutions make a relevant step toward the target solution, with significant improvements in the
left part of the Pareto front. The values of the metrics (Figures 5b–5d) confirm this visual evaluation and the
point-to-point metric Dmin is the one with the largest improvement (larger than 20%, while HV and Davg

improvements are equal to 14% and 2%, respectively).

Finally, the last variable selected is the previous day flow in the Da River measured at Ta Bu (qTB
t ). The per-

formance of the IOPs(t; st; qVQ
t ; qTB

t ) is represented in Figure 5a by magenta points. Results show that the
EVSI of the flow observed at Ta Bu is marginal and only allows the attainment of higher hydropower
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production for values of Jflo between 100 and 200 cm2/d. The values of the metrics confirm this qualitative
observation, attaining an average improvement among the three metrics smaller than 2%.

Given the limited improvement obtained by adding qTB
t , we decided to stop the policy design at this step. A

large gap still remains between the best Improved Operating Policies IOP(t; st; qVQ
t ; qTB

t ) and the set of Per-
fect Operating Policies. However, such a gap could only be closed by using information able to ‘‘anticipate’’
floods by at least 4 days, such as observations of precipitation or streamflow in the upstream Chinese part
of the Da River basin or accurate streamflow forecasts. In fact, previous studies [Castelletti et al., 2012] show
that this is the time needed to drawdown the Hoa Binh level and to create the storage volume for large
flood events. Such information is currently not available due to the lack of hydrometeorological data in the
upstream Chinese part of the Da River basin.

The values of the metrics used for assessing the EVSI can also be compared to the results of the IIS algo-
rithm to understand whether there exists a direct relationship between the performance of the regression
model in explaining the optimal sequence of release decisions and the performance of the associated oper-
ating policies. Results show that increasing information yields higher performance both in terms of R2 and
EVSI. We observe the presence of a saturation effect, which confirms that the day of the year (t) and the
Hoa Binh storage (st) represent the most valuable information (i.e., R2 5 0.71, Dmin 5 0.35, and HV 5 0.58)
while the contribution of the other two variables, namely the previous day streamflow at Vu Quang (qVQ

t )
and at Ta Bu (qTB

t ), is smaller (i.e., DR250:04; DDmin50:07, and DHV 5 0.09). However, the relationships
between the regression model’s performance and the associated values of the three metrics assessing the
value of information seem to be nonlinear, thus suggesting that a given improvement in explaining the
optimal sequence of release decisions does not yield the same improvement in the performance of the set
of operating policies.

5.4. Analysis of the Operating Policies
To better understand the contribution of each selected variable in enhancing the operations of the Hoa
Binh reservoir, we analyze the dynamic behavior of the system under different operating policies condi-
tioned over distinct information. The selected solutions, identified by the boxed points in Figure 5a, are: the
target Perfect Operating Policy (black), one Basic Operating Policy selected from the set of BOPs as being
closest to the target solution (red), and one Improved Operating Policy selected from each respective set
according to the same criterion (blue, green, magenta).

Figure 7 reports the simulated trajectory of the Hoa Binh storage under each considered policy. As clearly
shown by the cyclostationary mean over the period 1995–2006 represented in Figure 7a, the timing of the
reservoir drawdown is key to effectively balance Jhyd and Jflo. The target Perfect Operating Policy (black line)
is indeed able to delay the reservoir drawdown as much as possible and to refill it as soon as possible in
order to reduce the losses in hydropower generation that are encountered when the reservoir level must
be kept low during the flood season. The Basic Operating Policy (red line) shows two large drawdown
cycles, corresponding to the two peaks of the monsoon, with the first one operated more than 1 month
early than under the target solution. This is because the BOP does not use any variable describing the cur-
rent system condition and therefore is overly conservative. The trajectories obtained under the considered
Improved Operating Policies become closer and closer to the ideal black one when moving from the sim-
plest alternative (blue) to the most sophisticate one (magenta).

Figures 7b–7e show the storage trajectories in the individual years (the color tone is used to differentiate
the years from 1995 (dark) to 2006 (light)). The main differences from one policy to another can be
observed in the two drawdown cycles. Both the Basic and the Improved Operating Policies (Figures 7c–7f)
show similar patterns during the first drawdown (i.e., from day 100 to 150) in all years. On the contrary, the
target Perfect Operating Policy (Figure 7b) generates different trajectories, and in particular different timing
of the drawdown, across the years: for instance, for 2 years when no large floods occurred the reservoir is
maintained full until day 130. A similar behavior is observed in the second cycle (from day 200 to 250). The
Basic Operating Policy produces significant drawdowns every year (Figure 7c), whereas the trajectories tend
to differentiate across the years when additional information is considered (Figures 7d and 7e). In particular,
the IOP(t; st; qVQ

t ; qTB
t ) reported in Figure 7e effectively reproduces the trajectories of the target POP, with

larger drawdown in the first (dark) years than in the last (light) ones.
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Finally, Figure 8 compares the simulated level in Hanoi during a flood event in 2002. The black line shows
the ideal trajectory obtained under the target Perfect Operating Policy. According to the objective formula-
tion which elevates the level excess to the square (see equation (6)), this solution successfully minimizes Jflo

by reducing the flood peak and distributing the flood over time. All the other policies, which do not have
perfect information on the future, are instead less effective and produce higher water levels, particularly

Figure 7. Comparison of the Hoa Binh storage trajectories under the target Perfect Operating Policy, the selected Basic Operating Policy, and the selected Improved Operating Policies.

Figure 8. Comparison of the Hanoi level during a flood event in 2002 under the target Perfect Operating Policy, the selected Basic Operat-
ing Policy, and the selected Improved Operating Policies.
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during the two peaks on 5 August and 20 August. The trajectories during the first peak further demonstrate
the contribution of each selected variable in approximating the target POP solution (see the dashed black
circle). The red trajectory obtained under the Basic Operating Policy produces the highest water levels,
which explains its poor performance in terms of Jflo. As in Figure 7a, the Improved Operating Policies
become closer and closer to the target POP by incrementally adding information to condition the operating
policy.

5.5. The Economic Value of Information
The earlier analysis can be integrated to provide an estimate of the economic value of the information used
in conditioning the Hoa Binh operations, which can be defined by the reduction in the flood costs attained
by using a larger set of information. This monetary value represents an indication about the maximum
amount a decision maker might be willing to pay in order to acquire the information needed for condition-
ing the policy and increase the flood protection. We focus the analysis on the same four policies considered
in the previous section, namely the target Perfect Operating Policy along with one Basic and one Improved
Operating Policy selected from each respective set as being closest to the target solution (see Figure 5a, the
boxed points).

Since the two considered operating objectives are not expressed in monetary values, the economic cost of
flooding is estimated by adopting the same approach used in Giuliani and Castelletti [2013], which relies on
the a posteriori trade-off analysis of the Pareto front and the evaluation of the corresponding shadow pri-
ces, which provide an estimate of the flood damages’ marginal abatement costs [Lee et al., 2002]. In the Hoa
Binh problem, the definition of Pareto optimality ensures that the decrease in the hydropower production
associated to a given Pareto optimal solution with respect to the hydropower extreme of the Pareto front
(i.e., the solution designed assigning weight equal 1 to Jhyd and equal 0 to Jflo) is compensated by the corre-
sponding reduction in the flooding objective. For example, the difference in terms of hydropower produc-
tion attained by the target Perfect Operating Policy with respect to the hydropower extreme of the POPs’
Pareto front is DJhyd 5 2153,171 kWh/d. This worsening is however balanced by a better performance in
terms of Jflo, namely DJflo 5 2727.5 cm2/d.

By relying on this idea, the economic cost of flooding can be estimated by replacing the hydropower pro-
duction with the associated revenue. In particular, we assume an average energy price equal to 0.06 US$/
kWh, which does not change during the year. Note that this is not the real energy price in Vietnam because
there is no energy market. This value has been estimated on the basis of the price applied to the energy
imported in Vietnam from China. The flooding cost m can be estimated as the slope of the line connecting
the target solution to the hydropower extreme of the Pareto front, i.e.

m5
DJhyd30:06

DJflo
512:80

US$
cm2

5345:27
US$
cm

(7)

The estimated flood cost m allows an economic assessment of the flood costs’ reductions potentially achiev-
able under the different operating policies. Table 1 reports the performance attained by each policy (i.e.,
BOP, IOPs, and POP) in the two operating objectives, the associated economic cost of flooding, and the esti-
mated economic value of information. The potential improvements achievable with the Perfect Operating
Policy with respect to the Basic Operating Policy (i.e., 7.3% in terms Jhyd and 73.9% in terms of Jflo) confirm
the challenges associated to the selected target solution as well as the focus of the overall analysis on guar-
anteeing adequate flood protection. The results attained by the Improved Operating Policies demonstrate
the effectiveness of the proposed procedure, which provides an improvement of 40% in terms of Jflo with
the IOP(t; st; qVQ

t ; qTB
t ).

Table 1. Economic Value of Information

Selected Policy
Jhyd

(kWh/d)
DJhyd

(kWh/d)
Jflo

(cm2/d)
DJflo

(cm2/d)
Economic Flood

cost (US$/d)
Economic Value of

Information (US$/d)

BOP(t) 2.32 3 107 399.8 5117.6
IOP(t,st) 2.38 3 107 12.6% 314.0 221.5% 4019.4 1098.2
IOP(t; st ; qVQ

t ) 2.40 3 107 13.4% 259.6 235.1% 3322.6 1795.0
IOP(t; st ; qVQ

t ; qTB
t ) 2.39 3 107 13.0% 238.0 240.5% 3046.3 2071.3

POP 2.49 3 107 17.3% 104.3 273.9% 1334.6 3783.0
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In addition, the computation of the economic value of information allows associating monetary values to
the information employed in conditioning the Hoa Binh operating policy. Numerical results confirm that a
major contribution is provided by the use of the Hoa Binh storage, which is associated to a 20% reduction
of the flood cost and an economic value of information equal to 1098.2 US$/d. The economic value of infor-
mation then increases when additional variables are considered, even though the marginal improvement
tend to decrease when moving from the IOP(t,st) to the IOP(t; st; qVQ

t ; qTB
t ). Finally, a large gap remains

between this latter and the Perfect Operating Policy (i.e., around 1700 US$/d), which further confirms that
the optimal operations of the Hoa Binh would require additional information that is not currently available,
such as observations of hydrometeorological data in the upstream Chinese part of the Da River basin.

6. Conclusions

In this paper, we propose an Information Selection and Assessment (ISA) framework to automatically select
the most valuable information for informing water systems operations. We suggest several computational
tools that can be used to directly embed this information into the design of reservoir operating policies and
we provide quantitative metrics to assess the operational and economic value of information. The regula-
tion of the Hoa Binh water reservoir in Vietnam is used as a case study.

Results show the effectiveness of the proposed ISA framework: by incrementally adding variables to the res-
ervoir operating policies, the corresponding Pareto fronts move toward the set of Perfect Operating Policies
(POPs) obtained under the assumption of perfect information on the future. Since in the proposed applica-
tion a single target POP solution is used to select the information, we observe larger improvements close to
this target solution than in other part of the Pareto front. The best Improved Operating Policies indeed
attain a 3% increase in hydropower production and a 40% improvement in flood protection. This seems to
be reasonable as the designed operating policies are conditioned upon information that is relevant for one
specific compromise between hydropower production and flood control, while different variables might be
more significant for other target solutions.

Further research efforts will focus on the application of the ISA framework to reservoir operations problems
involving long-term objectives, for instance irrigation supply, along with the use of more complex data
sources, such as snow information, remote sensed data, or weather forecasts. While the steps and methods
employed in the ISA would remain exactly the same, we expect its value should increase given the tradi-
tional difficulties of identifying effective exogenous variables that could convey information relevant over a
long lead time. This should be possible for instance in those regions where low-frequency climate phenom-
ena, such as El Nino Southern Oscillation, seem to have a significant impact on local climate and hydrology
[e.g., Hamlet and Lettenmaier, 2000; Beltrame et al., 2014].

Another next step of our research is the comparison of the model-free ISA framework and the more conven-
tional approach where observations are used to force a flow forecasting model, and the flow forecasts are
then used to inform reservoir decisions. This approach might provide a better anticipation capacity and cap-
ture information about evolving conditions (e.g., change in flow velocity linked to flood wave, optimization
of choice of optimal time of observation in order to capture specific part of the rising limb, peak, and reces-
sion phase), which are not taken into consideration in the model-free ISA framework. This comparison goes
beyond the scope of the present paper, which focuses on introducing and discussing the former approach.
A consistent comparison of the two approaches across catchments with different characteristics (e.g., snow-
melt-dominated, arid or semiarid, etc.) and management problems with different objectives (e.g., long-term
or short-term) could help understanding the links between such features of a water system and the likely
benefit of developing a flow forecasting system versus the direct use of information in water systems opera-
tions. These insights could help in setting priorities between the improvement of monitoring systems or, on
the contrary, of flow forecasting systems. It is worth noting that the ISA framework can also be potentially
used to support the identification of the most valuable forecasts (e.g., the best/maximum lead time), partic-
ularly in the case of medium-long-term forecasts.

Finally, the ISA framework can be used for improving the operations of any water system, from water distri-
bution to groundwater pumping, and can be further extended in order to assess the value of information
with respect to multiple competing objectives and to study how changing the trade-off (i.e., the target solu-
tion) requires using different information.

Water Resources Research 10.1002/2015WR017044

GIULIANI ET AL. INFORMATION SELECTION AND ASSESSMENT FRAMEWORK 9090



References
Alberini, A., A. Hunt, and A. Markandya (2006), Willingness to pay to reduce mortality risks: Evidence from a three-country contingent valu-

ation study, Environ. Resour. Econ., 33(2), 251–264.
Alemu, E., R. Palmer, A. Polebitski, and B. Meaker (2011), Decision support system for optimizing reservoir operations using ensemble

streamflow predictions, J. Water Resour. Plann. Manage., 137(1), 72–82, doi:10.1061/(ASCE)WR.1943-5452.0000088.
Anghileri, D., A. Castelletti, F. Pianosi, R. Soncini-Sessa, and E. Weber (2013), Optimizing watershed management by coordinated operation

of storing facilities, J. Water Resour. Plann. Manage., 139(5), 492–500.
Ansar, A., B. Flyvbjerg, A. Budzier, and D. Lunn (2014), Should we build more large dams? The actual costs of hydropower megaproject

development, Energy Policy, 69, 43–56, doi:10.1016/j.enpol.2013.10.069.
Bellman, R. (1957), Dynamic Programming, Princeton Univ. Press, Princeton, N. J.
Beltrame, L., D. Carbonin, S. Galelli, A. Castelletti, and M. Giuliani (2014), Quantifying ENSO impacts at the basin scale using the Iterative

Input variable Selection algorithm, in Proceedings of the 7th International Congress on Environmental Modeling and Software (iEMSs
2014), June 15–19, edited by D. P. Ames, N. W. T. Quinn, and A. E. Rizzoli, San Diego, Calif.

Bertsekas, D. (1976), Dynamic Programming and Stochastic Control, Academic, N. Y.
Block, P., and L. Goddard (2012), Statistical and dynamical climate predictions to guide water resources in ethiopia, J. Water Resour. Plann.

Manage., 138(3), 287–298.
Bras, R., R. Buchanan, and K. Curry (1983), Real time adaptive closed loop control of reservoirs with the High Aswan Dam as a case study,

Water Resour. Res., 19(1), 33–52.
Busoniu, L., D. Ernst, B. De Schutter, and R. Babuska (2011), Cross–entropy optimization of control policies with adaptive basis functions,

IEEE Trans. Syst. Man Cybern. Part B, 41(1), 196–209, doi:10.1109/TSMCB.2010.2050586.
Butler, D. (2007), Earth monitoring: The planetary panopticon, Nature, 450, 778–781.
Castelletti, A., F. Pianosi, and R. Soncini-Sessa (2008a), Receding horizon control for water resources management, Appl. Math Comput.,

204(2), 621–631.
Castelletti, A., F. Pianosi, and R. Soncini-Sessa (2008b), Water reservoir control under economic, social and environmental constraints, Auto-

matica, 44(6), 1595–1607.
Castelletti, A., S. Galelli, M. Restelli, and R. Soncini-Sessa (2010), Tree-based reinforcement learning for optimal water reservoir operation,

Water Resour. Res., 46, W09507, doi:10.1029/2009WR008898.
Castelletti, A., F. Pianosi, X. Quach, and R. Soncini-Sessa (2012), Assessing water reservoirs management and development in Northern Viet-

nam, Hydrol. Earth Syst. Sci., 16(1), 189–199, doi:10.5194/hess-16-189-2012.
Castelletti, A., F. Pianosi, and M. Restelli (2013), A multiobjective reinforcement learning approach to water resources systems operation:

Pareto frontier approximation in a single run, Water Resour. Res., 49, 3476–3486, doi:10.1002/wrcr.20295.
Côt�e, P., D. Haguma, R. Leconte, and S. Krau (2011), Stochastic optimisation of Hydro-Quebec hydropower installations: A statistical com-

parison between SDP and SSDP methods, Can. J. Civ. Eng., 38(12), 1427–1434.
Deisenroth, M., G. Neumann, and J. Peters (2011), A Survey on Policy Search for Robotics, in Foundations and Trends in Robotics, vol.2, pp.

1–142. [Available at http://www.complacs.org/uploads/CompLACS/D312.pdf.]
Delqui�e, P. (2008), Valuing information and options: An experimental study, J. Behav. Decis. Making, 21(1), 91–109.
Desreumaux, Q., P. Côt�e, and R. Leconte (2014), Role of hydrologic information in stochastic dynamic programming: A case study of the

Kemano hydropower system in British Columbia, Can. J. Civ. Eng., 41(9), 839–844.
Faber, B., and J. Stedinger (2001), Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts, J.

Hydrol., 249(1), 113–133, doi:10.1016/S0022-1694(01)00419-X.
Fernandez, A., S. Blumsack, and P.M. Reed (2013), Operational constraints and hydrologic variability limit hydropower in supporting wind

integration, Environ. Res. Lett., 8(2), 24–37, doi:10.1088/1748-9326/8/2/024037.
Fraternali, P., A. Castelletti, R. Soncini-Sessa, C. Vaca Ruiz, and A. Rizzoli (2012), Putting humans in the loop: Social computing for Water

Resources Management, Environ. Modell. Software, 37, 68–77.
Galelli, S., and A. Castelletti (2013a), Tree-based iterative input variable selection for hydrological modeling, Water Resour. Res., 49, 4295–

4310, doi:10.1002/wrcr.20339.
Galelli, S., and A. Castelletti (2013b), Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling,

Hydrol. Earth Syst. Sci. Discuss., 10(2), 1617–1655.
Galelli, S., G. Humphrey, H. Maier, A. Castelletti, G. Dandy, and M. Gibbs (2014), An evaluation framework for input variable selection algo-

rithms for environmental data-driven models, Environ. Modell.Software, 62, 33–51.
Gass, S., and T. Saaty (1955), Parametric objective function: Part II, Oper. Res., 3, 316–319.
Geurts, P., D. Ernst, and L. Wehenkel (2006), Extremely randomized trees, Mach. Learn., 63(1), 3–42.
Giuliani, M., and A. Castelletti (2013), Assessing the value of cooperation and information exchange in large water resources systems by

agent–based optimization, Water Resour. Res., 49, 3912–3926, doi:10.1002/wrcr.20287.
Giuliani, M., J. Herman, A. Castelletti, and P. Reed (2014a), Many-objective reservoir policy identification and refinement to reduce policy

inertia and myopia in water management, Water Resour. Res., 50, 3355–3377, doi:10.1002/2013WR014700
Giuliani, M., S. Galelli, and R. Soncini-Sessa (2014b), A dimensionality reduction approach for Many-Objective Markov Decision Processes:

Application to a water reservoir operation problem, Environ. Model. Software, 57, 101–114, doi:10.1016/j.envsoft.2014.02.011.
Giuliani, M., E. Mason, A. Castelletti, F. Pianosi, and R. Soncini-Sessa (2014c), Universal approximators for direct policy search in multi-

purpose water reservoir management: A comparative analysis, in Proceedings of the 19th IFAC World Congress, International Federation
of Automatic Control, Cape Town, South Africa.

Giuliani, M., A. Castelletti, F. Pianosi, E. Mason, and P. Reed (2015), Curses, tradeoffs, and scalable management: Advancing evolutionary
multi-objective direct policy search to improve water reservoir operations, J. Water Resour. Plann. Manage., doi:10.1061/(ASCE)WR.1943-
5452.0000570. [Available at http://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0000570.]

Gleick, P., and M. Palaniappan (2010), Peak water limits to freshwater withdrawal and use, Proc. Natl. Acad. Sci. U. S. A., 107(25), 11,155–
11,162, doi:10.1073/pnas.1004812107.

Graham, N., and K. Georgakakos (2010), Toward understanding the value of climate information for multiobjective reservoir
management under present and future climate and demand scenarios, J. Appl. Meteorol. Climatol., 49(4), 557–573, doi:10.1175/
2009JAMC2135.1.

Hadka, D., and P. Reed (2012), Diagnostic assessment of search controls and failure modes in many–objective evolutionary optimization,
Evol. Comput., 20(3), 423–452.

Acknowledgments
This work was partially supported by
the IMRR - Integrated and sustainable
water Management of the Red-Thai
Binh Rivers System in changing climate
research project funded by the Italian
Ministry of Foreign Affair as part of its
development cooperation program.
Francesca Pianosi was supported by
the Natural Environment Research
Council (Consortium on Risk in the
Environment: Diagnostics, Integration,
Benchmarking, Learning and Elicitation
(CREDIBLE); grant number NE/J017450/
1). The authors would like to thank
Alessia Cavalli and Lea Janossy for
their contribution in developing initial
numerical experiments.The data used
in the study are from the Ministry of
Agriculture and Rural Development
(MARD) of Vietnam and have been
collected during the IMRR project
(http://http://xake.elet.polimi.it/imrr).

Water Resources Research 10.1002/2015WR017044

GIULIANI ET AL. INFORMATION SELECTION AND ASSESSMENT FRAMEWORK 9091

http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000088
http://dx.doi.org/10.1016/j.enpol.2013.10.069
http://dx.doi.org/10.1109/TSMCB.2010.2050586
http://dx.doi.org/10.1029/2009WR008898
http://dx.doi.org/10.5194/hess-16-189-2012
http://dx.doi.org/10.1002/wrcr.20295
http://www.complacs.org/uploads/CompLACS/D312.pdf
http://dx.doi.org/10.1016/S0022-1694(01)00419-X
http://dx.doi.org/10.1088/1748-9326/8/2/024037
http://dx.doi.org/10.1002/wrcr.20339
http://dx.doi.org/10.1002/wrcr.20287
http://dx.doi.org/10.1002/2013WR014700
http://dx.doi.org/10.1016/j.envsoft.2014.02.011
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000570
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000570
http://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0000570
http://dx.doi.org/10.1073/pnas.1004812107
http://dx.doi.org/10.1175/2009JAMC2135.1
http://dx.doi.org/10.1175/2009JAMC2135.1


Hadka, D., and P. Reed (2013), Borg: An auto–adaptive many–objective evolutionary computing framework, Evol. Comput., 21(2), 231–259.
Hamlet, A., and D. Lettenmaier (1999), Columbia river streamflow forecasting based on enso and pdo climate signals, J. Water Resour.

Plann. Manage., 125(6), 333–341.
Hamlet, A. F., and D. P. Lettenmaier (2000), Long-range climate forecasting and its use for water management in the Pacific Northwest

region of North America, J. Hydroinform., 2(3), 163–182.
Hansen, J., S. Mason, L. Sun, and A. Tall (2011), Review of seasonal climate forecasting for agriculture in sub-Saharan Africa, Exp. Agric.,

47(02), 205–240.
Hart, J. K., and K. Martinez (2006), Environmental Sensor Networks: A revolution in the earth system science?, Earth Sci. Rev., 78(3), 177–191.
Hejazi, M., X. Cai, and B. Ruddell (2008), The role of hydrologic information in reservoir operation-learning from historical releases, Adv.

Water Resour., 31(12), 1636–1650.
Karamouz, M., and H. Vasiliadis (1992), Bayesian stochastic optimization of reservoir operation using uncertain forecasts, Water Resour. Res.,

28(5), 1221–1232.
Kasprzyk, J., P. Reed, B. Kirsch, and G. Characklis (2009), Managing population and drought risks using many-objective water portfolio plan-

ning under uncertainty, Water Resour. Res., 45, W12401, doi:10.1029/2009WR008121.
Khader, A., D. Rosenberg, and M. McKee (2013), A decision tree model to estimate the value of information provided by a groundwater

quality monitoring network, Hydrol. Earth Syst. Sci., 17(5), 1797–1807, doi:10.5194/hess-17-1797-2013.
Kim, Y., and R. Palmer (1997), Value of seasonal flow forecasts in Bayesian stochastic programming, J. Water Resour. Plann. Manage., 123(6),

327–335, doi:10.1061/(ASCE)0733-9496(1997)123:6(327).
Lee, J.-D., J.-B. Park, and T.-Y. Kim (2002), Estimation of the shadow prices of pollutants with production/environment inefficiency taken

into account: A nonparametric directional distance function approach, J. Environ. Manage., 64(4), 365–375.
Li, W., A. Sankarasubramanian, R. Ranjithan, and E. Brill (2014), Improved regional water management utilizing climate forecasts:

An interbasin transfer model with a risk management framework, Water Resour. Res., 50, 6810–6827, doi:10.1002/
2013WR015248.

Loucks, D., and O. Sigvaldason (1982), Multiple-reservoir operation in North America., in The Operation of Multiple Reservoir Systems, IIASA
Collab. Proc. Ser., edited by Z. Kaczmarck and J. Kindler, pp. 1–103, IIASA.

Loucks, D., E. van Beek, J. Stedinger, J. Dijkman, and M. Villars (2005), Water Resources Systems Planning and Management: An Introduction
to Methods, Models and Applications, UNESCO, Paris, France.

Madani, K., and J. Lund (2012), California’s Sacramento–San Joaquin delta conflict: From cooperation to chicken, J. Water Resour. Plann.
Manage., 138(2), 90–99, doi:10.1061/(ASCE)WR.1943-5452.0000164.

Maier, H., et al. (2014), Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future
directions, Environ. Modell. Software, 62(0), 271–299, doi:10.1016/j.envsoft.2014.09.013.

Maurer, E. P., and D. P. Lettenmaier (2004), Potential effects of long-lead hydrologic predictability on Missouri river main-stem reservoirs, J.
Clim., 17(1), 174–186.

Mhaskar, H., and C. Micchelli (1992), Approximation by superposition of sigmoidal and radial basis functions, Adv. Appl. Math., 13(3), 350–
373.

Minsker, B., et al. (2006), NCSA environmental cyberinfrastructure demonstration project: Creating cyberenvironments for environmental
engineering and hydrological science communities, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 161 pp., ACM,
Tampa, Fla.

Oludhe, C., A. Sankarasubramanian, T. Sinha, N. Devineni, and U. Lall (2013), The role of multimodel climate forecasts in improving water
and energy management over the tana river basin, kenya, J. Appl. Meteorol. Climatol., 52(11), 2460–2475.

Pianosi, F., and R. Soncini-Sessa (2009), Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model,
Water Resour. Res., 45, W10430, doi:10.1029/2008WR007335.

Pianosi, F., X. Quach, and R. Soncini-Sessa (2011), Artificial Neural Networks and Multi Objective Genetic Algorithms for water resources
management: An application to the Hoabinh reservoir in Vietnam, in Proceedings of the 18th IFAC World Congress, International Federa-
tion of Automatic Control, Milan, Italy.

Pianosi, F., A. Castelletti, and M. Lovera (2012), Identification of a flow-routing model for the Red River network, in System Identification, vol.
16, pp. 1037–1042, International Federation of Automatic Control, Brussels, Belgium.

Piccardi, C., and R. Soncini-Sessa (1991), Stochastic dynamic programming for reservoir optimal control: Dense discretization and inflow
correlation assumption made possible by parallel computing, Water Resour. Res., 27(5), 729–741.

Powell, W. (2007), Approximate Dynamic Programming: Solving the Curses of Dimensionality, John Wiley, N. J.
Reed, P., D. Hadka, J. Herman, J. Kasprzyk, and J. Kollat (2013), Evolutionary Multiobjective optimization in water resources: The past, pres-

ent, and future, Adv. Water Resour., 51, 438–456.
Sakalaki, M., and S. Kazi (2007), How much is information worth? Willingness to pay for expert and non-expert informational goods com-

pared to material goods in lay economic thinking, J. Inform. Sci., 33(3), 315–325.
Sharma, A. (2000), Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1: A strategy for sys-

tem predictor identification, J. Hydrol., 239(1), 232–239.
Sharma, A., and S. Chowdhury (2011), Coping with model structural uncertainty in medium-term hydro-climatic forecasting, Hydrol. Res.,

42(2-3), 113–127.
Sheer, D. (2010), Dysfunctional water management: Causes and solutions, J. Water Resour. Plann. Manage., 136(1), 1–4.
Shukla, S., N. Voisin, and D. P. Lettenmaier (2012), Value of medium range weather forecasts in the improvement of seasonal hydrologic

prediction skill, Hydrol. Earth Syst. Sci. Discuss., 9(2), 1827–1857, doi:10.5194/hessd-9-1827-2012.
Soncini-Sessa, R., A. Castelletti, and E. Weber (2007), Integrated and Participatory Water Resources Management: Theory, Elsevier, Amsterdam,

Netherlands.
Stedinger, J., B. Sule, and D. Loucks (1984), Stochastic dynamic programming models for reservoir operation optimization, Water Resour.

Res., 20(11), 1499–1505.
Stone, R. (2011), The legacy of the three gorges dam, Science, 333(6044), 817–817, doi:10.1126/science.333.6044.817.
Tejada-Guibert, J., S. Johnson, and J. Stedinger (1995), The value of hydrologic information in stochastic dynamic programming models of

a multireservoir system, Water Resour. Res., 31(10), 2571–2579.
The Economist Editorial (2011), Welcome to the Anthropocene.
Tsitsiklis, J., and B. Van Roy (1996), Feature-based methods for large scale dynamic programming, Mach. Learn., 22, 59–94.
U.S. Army Corps of Engineers (1977), Reservoir System Analysis for Conservation, Hydrologic Engineering Methods for Water Resources Devel-

opment, Hydrol. Eng. Cent., Davis, Calif.

Water Resources Research 10.1002/2015WR017044

GIULIANI ET AL. INFORMATION SELECTION AND ASSESSMENT FRAMEWORK 9092

http://dx.doi.org/10.1029/2009WR008121
http://dx.doi.org/10.5194/hess-17-1797-2013
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:6(327)
http://dx.doi.org/10.1002/2013WR015248
http://dx.doi.org/10.1002/2013WR015248
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000164
http://dx.doi.org/10.1016/j.envsoft.2014.09.013
http://dx.doi.org/10.1029/2008WR007335
http://dx.doi.org/10.5194/hessd-9-1827-2012
http://dx.doi.org/10.1126/science.333.6044.817


Voisin, N., A. F. Hamlet, L. P. Graham, D. W. Pierce, T. P. Barnett, and D. P. Lettenmaier (2006), The role of climate forecasts in western US
power planning, J. Appl. Meteorol. Climatol., 45(5), 653–673.

Yokota, F., and K. Thompson (2004), Value of information analysis in environmental health risk management decisions: Past, present, and
future, Risk Anal., 24(3), 635–650.

You, J.-Y., and X. Cai (2008), Determining forecast and decision horizons for reservoir operations under hedging policies, Water Resour. Res.,
44, W11430, doi:10.1029/2008WR006978.

Zhao, T., and J. Zhao (2014), Joint and respective effects of long-and short-term forecast uncertainties on reservoir operations, J. Hydrol.,
517, 83–94.

Zhao, T., J. Zhao, J. Lund, and D. Yang (2014), Optimal hedging rules for reservoir flood operation from forecast uncertainties, J. Water
Resour. Plann. Manage., 140(12), 04014041, doi:10.1061/(ASCE)WR.1943-5452.0000432.

Zitzler, E., K. Deb, and L. Thiele (2000), Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comput., 8(2), 173–
195, doi:10.1162/106365600568202.

Zitzler, E., L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca (2003), Performance assessment of multiobjective optimizers: An analysis
and review, IEEE Trans. Evol. Comput., 7(2), 117–132.

Ziv, G., E. Baran, S. Nam, I. Rodriguez-Iturbe, and S. Levin (2012), Trading-off fish biodiversity, food security, and hydropower in the mekong
river basin, Proc. Natl. Acad. Sci. U. S. A., 109(15), 5609–5614, doi:10.1073/pnas.1201423109.

Water Resources Research 10.1002/2015WR017044

GIULIANI ET AL. INFORMATION SELECTION AND ASSESSMENT FRAMEWORK 9093

http://dx.doi.org/10.1029/2008WR006978
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000432
http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1073/pnas.1201423109

	l
	l
	l
	l
	l

