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Abstract. In many developing countries water is a key
renewable resource to complement carbon-emitting energy
production and support food security in the face of demand
pressure from fast-growing industrial production and urban-
ization. To cope with undergoing changes, water resources
development and management have to be reconsidered by
enlarging their scope across sectors and adopting effective
tools to analyze current and projected infrastructure potential
and operation strategies. In this paper we use multi-objective
deterministic and stochastic optimization to assess the cur-
rent reservoir operation and planned capacity expansion in
the Red River Basin (Northern Vietnam), and to evaluate the
potential improvement by the adoption of a more sophisti-
cated information system. To reach this goal we analyze the
historical operation of the major controllable infrastructure in
the basin, the HoaBinh reservoir on the Da River, explore re-
operation options corresponding to different tradeoffs among
the three main objectives (hydropower production, flood con-
trol and water supply), using multi-objective optimization
techniques, namely Multi-Objective Genetic Algorithm. Fi-
nally, we assess the structural system potential and the need
for capacity expansion by application of Deterministic Dy-
namic Programming. Results show that the current operation
can only be relatively improved by advanced optimization
techniques, while investment should be put into enlarging the
system storage capacity and exploiting additional informa-
tion to inform the operation.

1 Introduction

Starting in the late Eighties, Vietnam has undertaken a com-
prehensive reform (Doi Moi) of liberalization of economic
production and exchange, which has been the key driver of
its explosive economic and demographic development in the
last two decades (Toan et al., 2011). The rapid growth re-
sulted in an increased energy demand, which has been grow-
ing at an annual rate of nearly 15 % in the last ten years;
but also boosted internal migration from rural areas to the
main cities, which are sprawling uncontrolled (Hoang et al.,
2010). Water resources play a central role in this develop-
ment: hydropower is the primary renewable energy resource
in the country (33 % of the total electric power production)
and, despite the considerably increasing importance of the in-
dustrial and service sectors, agriculture (76 % of whose prod-
uct comes from irrigated land) is still an important economic
drive (Nguyen et al., 2002) – which contributes for 18 % to
the GDP, but employes 70 % of the population – and a pri-
mary source to ensure food security in the face of demand
pressure. Unfortunately, water is also responsible for most of
the worst natural disasters that occurred in the country in re-
cent years (Hansson and Ekenberg, 2002). Severe floods are
plaguing Hanoi every year during the heavy rain monsoon
season with increasing damage in the unusually overdevel-
oped river urban area.

To cope with this heterogeneous and fast-evolving con-
text, water resources development and management needs to
be reconsidered to improve resilience of economy, society
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and environment in the entire Vietnam. Increased water stor-
age at the river basin level is certainly a major component
of vulnerability reduction strategies, however the optimal re-
operation of the available storing capacity is an economi-
cally interesting and potentially effective alternative, or sim-
ply complementary option, to infrastructure development.

In this paper we use multi-objective deterministic and
stochastic optimization to assess the current management of
the Red River Basin, the second largest basin of Vietnam,
and the room for improvement accounting for the multiple
and conflicting objectives of hydropower production, flood
control and water supply to irrigated agriculture. We fo-
cus on the major controllable infrastructure in the basin, the
HoaBinh reservoir on the Da River, that produces about 15 %
of the annual national electricity. We analyze the historical
dam operation and explore re-operation options correspond-
ing to different tradeoffs among the three objectives, using
multi-objective optimization techniques. Finally, we assess
the structural system potential and the need for capacity ex-
pansion by application of deterministic optimization.

In the literature, we found only two works on the operation
of the HoaBinh reservoir.Ngo et al.(2008) use traditional
scenarios analysis to comparatively assess three alternative
operating policies on flood control and hydropower produc-
tion focusing on the flood season only. Built on these results,
Ngo et al.(2007) explore the reservoir re-operation by pa-
rameterization and subsequent optimization of the operating
rules through the Shuffled Complex Evolution algorithm. In
this paper we take a step forward by: (i) enlarging the trade-
off analysis to the water supply sector; (ii) enlarging the op-
timization horizon to the entire year thus allowing for inter
seasonal water transfer; (iii) exploiting more data availabil-
ity to introduce a clear distinction between the dataset used
for optimization and the one used for validation of the opti-
mized policies, which allows for a fair and statistically sound
comparison with the historical operation. From the method-
ological standpoint, this study constitutes an example of how
deterministic and stochastic optimization techniques can be
combined to infer knowledge on the functioning of a com-
plex system, and explore its limits and potential.

The paper is organized as follows. In the next section,
the model of the Red River Basin is described. This in-
cludes the definition of indicators to quantify and compare
the impacts of alternative operating policies on the socio-
economic system, and the model of the physical components,
namely rivers and reservoir. In Sect. 3, the re-operation of
the HoaBinh reservoir is discussed. To this purpose, stochas-
tic optimization (specifically Multi-Objective Genetic Algo-
rithms) is used. The indicators defined in Section 2 constitute
the objective functions of the optimization problem, and the
model of the physical system the constraints. In Sect. 4, the
structural properties of the system, i.e. the upper bound of
performances determined by the current storing capacity, is
investigated by deterministic optimization (i.e. Deterministic
Dynamic Programming). The major outcome of the study,
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Fig. 1. The Red River Basin in Northern Vietnam.

the limitations and the topics for further research are sum-
marized in the last section.

2 System and models

The Red River Basin (Fig. 1) is the second largest basin of
Vietnam, with a total area of about 169 000 km2, of which
48 % in China’s territory, 51 % in Vietnam, and the rest in
Laos. Of three main tributaries, the Da River is the most im-
portant water source, contributing for 42 % of the total dis-
charge at SonTay. The rainfall distribution is significantly
uneven: rainfall of the rainy season, from May to October,
accounts for nearly 80 % of the yearly amount, peaking in
August (20 %).

Since 1989, the discharge from the Da River has been reg-
ulated by the operation of the HoaBinh reservoir. The con-
struction of the dam started in 1979 and finished in 1989,
while the filling of the reservoir was completed by 1994.
With a storage capacity of 9.8 billion m3, the HoaBinh reser-
voir is the largest reservoir in use in Vietnam and accounts
for the 15 % of the national electricity production. The dam
operation also contributes to flood control, especially to pro-
tect the region’s capital city of Hanoi, and to water supply for
irrigated agriculture in the Red River Delta.

2.1 The socio-economic system

Social and economic interests in the Red River basin are
modeled through physical indicators that quantify the eval-
uation criteria that the relevant stakeholders adopt in judg-
ing and comparing alternative operating policies. The for-
mulation and subsequent identification of these indicators
should take into consideration some fundamental properties
and concepts: (i) indicators are supposed to accurately repro-
duce the stakeholders viewpoints and should thus reflect their
perception of the problem; (ii) they must meet some techni-
cal requirements imposed by the control algorithm adopted to
design the operating policies. Precisely, the indicators must
be formulated as the integral over a reference time horizon
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of immediate costs that should be, in turn, easily computable
from the system model output without adding to much to the
problem complexity. To balance fidelity and computational
complexity, immediate costs are formulated as simple physi-
cal relationships including empirical parameters fitted to the
stakeholder risk perception.

2.1.1 Hydropower production

The Vietnamese electricity market is regulated by the Gov-
ernment and the energy is sold at a fixed rate decided on the
basis of the average energy production cost and the current
economic development strategy. Electricity prices change
depending upon the energy destination (industrial or domes-
tic use) and the total energy consumed but not within the day
or the week. In economic terms, given the fixed cost of hy-
dropower generation, maximizing the energy production is
equivalent to maximize the associated revenue. Yet, the fast-
growing national energy demand (Toan et al., 2011) and the
recently increasing frequency of power shortages in the last
three months of the dry season, from April to June, make the
smaller energy available in this period much more valuable
than in others. To account for this seasonal variability, in
formulating the immediate cost, the daily energy production
Pt+1 [GWh] (see Eq.5) is filtered by a time-varying coeffi-
cient αt , expressing the value given to one GWh on dayt ,
i.e.

g
hyd
t+1 = −αt Pt+1. (1)

Based on the analysis of the energy deficit and the conse-
quent import from China in the different seasons,αt is as-
sumed equal to 2 from April to June and 1 in the other
months. Since the indicators are formulated as costs, the pro-
duction in Eq. (1) is changed in sign.

2.1.2 Water supply

Wet-rice agriculture is key to national food security but also
the most important segment of the Vietnamese economy
(FAOSTAT, 2003). The optimal climatic conditions and
plentiful water resources of this tropical monsoonal region
enabled an intensive rice production in the Red River Delta
(RRD), composed of 31 irrigation schemes servicing around
850 000 ha of irrigated agriculture (Turral and Chien, 2002)
and forming the second largest rice production area in the
country after the Mekong Delta. The maximization of the
net crop return (including variable and fixed costs) is the eco-
nomic indicator traditionally adopted by the wet-agriculture
sector (e.g. seeKipkorir et al., 2001). However, both crop
price and yield dynamics do require sophisticated models,
which are not easily identifiable from conventional observa-
tional data and would considerably add to the computational
burden of the problem. In addition, the extensive use of
pumping stations in the RRD distribution network (George
et al., 2003) implies substantial energy costs in operating the

irrigation scheme that, however, are hardly estimable due to
the lack of data (Harris, 2006). For these reasons, the av-
erage annual water deficit can be adopted as a proxy of the
annual crop yield and the disaggregated daily deficit the cor-
responding immediate cost. This is a provably reasonable
hypothesis under the assumption that the considered operat-
ing policies will not move to much away from the current av-
erage water supply (Soncini-Sessa et al., 2007a). Further, to
make the surrogation more reliable, the annual deficit is not
linearly reallocated on a daily basis, but modulated by a time-
varying coefficientβt that accounts for the combined varietal
phenological stages and climate conditions and the associ-
ated time-varying risk of stress (e.g.Kulshreshtha and Klein,
1989). Finally, farmers are not insensitive to the magnitude
of the daily deficit since, the integral effect of water short-
ages being the same, several small deficits might be more ac-
ceptable than one single severe shortage that might strongly
affect crop production (e.g. seeDraper and Lund, 2004and
references therein). A behavioral coefficientn is thus used
to characterize farmers’ risk aversion:n = 1 means no risk
aversion, while forn → ∞ the aversion is maximum and the
indicator is equivalent to a min-max formulation (Soncini-
Sessa et al., 2007b). Correspondingly, the immediate cost
for the water supply is formulated as a power function:

g
sup
t+1 =

{
0 if qST

t+1 > wt

βt

(
wt − qST

t+1

)n
otherwise

(2)

wherewt andqST
t+1 [m3 s−1] are the daily water demand and

supply at SonTay (Fig.1), andβt is equal to 2 from January to
March, when the diverted flow from the Red River is the only
source for the submersion of paddy fields for winter-spring
rice crop, and 1 in the rest of the year when the submer-
sion for the summer-autumn crop is additionally supported
by rainfall.

2.1.3 Flood mitigation

Hanoi and its unusually overdeveloped river urban area
(RUA) are protected by a system of two series of dykes for a
total length of 2700 km. Floods mainly occur in July and Au-
gust and inundations produce enormous damage every time
dykes break (Hansson and Ekenberg, 2002), as regularly hap-
pened nearly once per decade in the last century. In principle,
an accurate modelling of flood inundations and the associated
damage requires to combine a 2D model of the floodplain to
estimate the flooded surface area (e.g.Hoang et al., 2007)
and a record of past flood recovery costs and associated river
flow rates to interpolate the corresponding damage (e.g.De
Kort and Booij, 2007). Because of the regularly disruptive
effects of the flood routing process following a dyke breach-
ing on the RUA morphology, any flood propagation model
should be recalibrated after every flood event. Further, the
fast uncontrolled urban development in the RUA is quickly
changing the size and shape of the floodplain, thus making
totally incomparable damages registered in different years.
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Damages can thus not be included as an indicator in our deci-
sion model. Nevertheless, it is observable (Vorogushyn et al.,
2010) that high and persisting flood water levels in Hanoi
correspond to high risk of dike break, and consequently high
potential damage. An indirect way of accounting for flood
damage is thus to penalize operating policies that produce
river water levels higher than some appropriately selected
threshold. Once again, economic relevance and risk percep-
tion are implicitly accounted for using some empirical coef-
ficients: the higher damage potential of floods in August on
the summer-autumn crop (Le et al., 2007) is given a higher
weight, while the increased stakeholders’ risk aversion to ex-
treme flood is modelled by using a power law. The resulting
immediate cost has the following form:

gflo
t+1 =

{
0 if hHN

t+1 ≤ h̄

δt

(
hHN

t+1 − h̄
)m

otherwise
(3)

where hHN
t+1 is the water level [cm] at Hanoi station,̄h

(= 950 cm) is the 1st alarm flood level (Hansson and Eken-
berg, 2002), δt is the seasonal coefficient (equals 2 in Au-
gust and 1 otherwise), andm is the coefficient reflecting risk
aversion here assumed equal to 2. The rational is that flood
risk comes from either the overtopping of the levees or the
levee breaches. The latter are more likely to occur in August
because the mean water level is 829 cm (against 453 cm in
the rest of the year) and thus the soil volume of the water-
saturated levee is larger. Water level excesses are thus given
more weight in August. Further, the total force on the levee,
which is the driver of collapse, increases with the square of
the water level, which motivates the choice of power 2 in
Eq. (3).

2.2 The physical system

The model of the Red River Basin is briefly described in
this section, more details can be found inQuach(2011).
It is composed of two main components: the model of the
HoaBinh reservoir and hydropower plant, and the model of
the river network downstream of the reservoir. A scheme of
the model and the most relevant variables is given in Fig.2.

2.2.1 The HoaBinh reservoir

The HoaBinh reservoir is an artificial reservoir with a stor-
age capacity of 9.8 billion m3 and an active storage of
6 billion m3, corresponding to a level operational range of
37 m. It has 8 penstoks, 12 bottom gates, and 6 spill-
ways with maximum release capacity of 2360 m3 s−1,
22 000 m3 s−1, and 14 000 m3 s−1 respectively. The reservoir
dynamics is modeled by daily mass balance equation consid-
ering inflow from the Da River catchment, evaporation and
release:

st+1 = st + qHB
t+1 − et+1 S(st ) − rt+1 (4)

wherest is the storage on dayt , qHB
t+1 is the inflow to the

HoaBinh reservoir (i.e. outflow of the Da catchment);et+1 is
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Fig. 2. The model scheme of the Red River Basin and the main
system variables.

the unitary surface evaporation (which follows a yearly pat-
tern);S(·) is the reservoir surface computed as a function of
the storage; andrt+1 is the release. The actual releasert+1
coincides with the release decisionut only if the latter is fea-
sible, i.e. included between the minimum and maximum fea-
sible release that can be obtained when all the gates are com-
pletely closed or open, respectively. Such values are com-
puted by integration of the continuous-time mass balance
equation using the instantaneous minimum and maximum
stage-discharge relation (Castelletti et al., 2008) as given by
the rating curves of the turbines, bottom gates, and spillways.

Validation of the reservoir model is carried out by com-
paring the historical time series (level and release) and the
simulated time series when using the reservoir model under
historical inflow. Since the historical release decision is not
known, simulation was run using the historical release as re-
lease decision. Still, the simulated trajectories might diverge
from the historical ones because either the evaporation con-
tribution in Eq. (4) or the feasibility constraints in computing
the actual release (minimum and maximum feasible release)
are not estimated properly. In our case study, simulation over
the period 1994–2005 showed that the model is quite accu-
rate, with simulated level and release almost coincident with
historical ones.

The HoaBinh hydropower plant, located just downstream
of the reservoir, has eight turbines with total installed capac-
ity of 1920 MW. The daily energy production [GWh] is

Pt+1 = ϕ g γ Ht+1 η(Ht+1) q turb
t+1 (5)

whereϕ is a coefficient of dimensional conversion,g is gravi-
tational acceleration,γ is water density,Ht+1 is the hydraulic
head difference (depending on the reservoir and downstream
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level), η(·) is the turbine efficiency andq turb
t+1 is the flow

through the turbines, given by

q turb
t+1 =

{
0 if rt+1 ≤ qmin

min (rt+1, qmax) otherwise
(6)

wherert+1 is the HoaBinh release,qmax is the maximum tur-
bines capacity (2360 m3 s−1), andqmin is the minimum re-
lease through the turbines (38 m3 s−1) as inferred from his-
torical data.

The model of the hydropower plant was validated by com-
parison of the energy production data over the period 1995–
2004 and model simulations, using historical level and re-
lease data as the input to the plant model of Eqs. (5)–(6). The
average annual energy production by the model is 7.82 TWh,
against a historical value of 7.76 TWh, equivalent to a rela-
tive error of 0.77 %. The relative absolute error in the esti-
mation of the daily production is much higher, about 11 %.
However, the mismatch may be ascribed to the measure-
ment errors in the release time series rather than to model
inaccuracy.

2.2.2 The downstream river network

Besides hydropower production, the release from HoaBinh
reservoir also affects the total discharge at SonTay and the
water level at Hanoi, which decide the extent of the water
deficit in the dry season and flood risk in the flood season.
Therefore, two downstream flow routing models, one for es-
timating the water levelhHN

t+1 at Hanoi (the so-called Hanoi
model) and the other for predicting the flowqST

t+1 at SonTay
(the so-called SonTay model), are needed (see Fig.2). For
both models, a data-driven approach based on a feedforward
neural network was used. The network architecture com-
prises a hidden layer ofν hyperbolic tangent neurons, and
an output layer of one linear neuron. For instance, the Son-
Tay model takes up the form

qST
t+1 = ϑ1 +

ν∑
i=1

ϑ2,i tansig
(
ϑ3,i rt+1 + ϑ4,i qYB

t+1

+ ϑ5,i q
VQ
t+1 + ϑ6,i

)
(7)

wherert+1 is the release from the HoaBinh reservoir,qYB
t+1

andq
VQ
t+1 are the flow from the two tributaries Thao and Lo;

andϑ1, ϑ2,i , ...,ϑ6,i (i = 1, ...,ν) are the network parameters.
Equation (7) defines an instantaneous, static relation be-

tween the upstream flowsrt+1, qYB
t+1, q

VQ
t+1 and the network

output (flow at SonTay/level in Hanoi). This is consistent
with data analysis, which shows high cross-correlation be-
tween input and output variables at lag value 0, and with
the study byNguyen(2010), which states that the translation
time from HoaBinh reservoir, Yenbai, and Vuquang to Son-
Tay and Hanoi is less than one day. However, adding lagged
values of upstream flows among the network inputs can im-
prove the model accuracy. This was not done in the present

study because of the need of finding a balance between model
accuracy and model complexity, which may prevent the ap-
plication of dynamic optimization methods like Determin-
istic Dynamic Programming (see Sect. 4), whose computa-
tional complexity increases exponentially with the number of
state variables in the global model, not only in the reservoir
model.

The optimal numberν of neurons in Eq. (7) was estimated
by trial and error. For each tested number of neurons, the
network parameters were estimated by minimization of the
squared deviations from observed flow at SonTay (or level
in HaNoi). The calibration dataset covers the period 1989–
2004, which includes the simulation horizon (1995–2004)
that will be used as the testing ground for the different reser-
voir operating policies. With this choice, it can be guaranteed
that the flow-routing process is optimally reproduced for the
time horizon of interest, even if the model accuracy outside
of this period is not known. In fact, river bed erosion that
started after the construction of the HoaBinh reservoir may
be affecting the statistical relation between flow variables in
the river network in the future. Consequently, the evolution
of such relation cannot be predicted by a model that does
not explicitly take into account erosion and aggradation pro-
cesses. While we have information that such processes are
undergoing, we do not have enough data to develop a model
to accurately reproduce them. So, the most that can be done
is to use historical time series and calibrate a model that can
adequately reproduce the flow routing process over the past.
Obviously, both the model and the operating policies that will
be subsequently designed may prove suboptimal if applied
in the future, under changed geomorphological conditions.
However, the main objective of this paper, i.e. to assess the
space for improvement of the historical operation, is not af-
fected by this limitation, since all operating policies are eval-
uated by the same model, and this is optimally calibrated for
the evaluation horizon under exam. Further, the simulation
and optimization tools here proposed and demonstrated can
be re-applied in the future as new data become available.

Table 1 reports several performance indicators of the opti-
mally calibrated downstream model (withν = 8 neurons for
the Hanoi model andν = 6 for the SonTay model). Some are
standard accuracy indicators like the coefficient of determi-
nation and the maximum absolute error, computed over the
period 1995–2004 (lines 1, 2 in the table) or over the subset
of low flows and high levels (lines 3 and 4). The other indi-
cators are more focused on the final scope of our modelling
exercise, that is to estimate the shortage in the water supply
at SonTay and the exceedance of the flooding threshold in
Hanoi (950 cm). Specifically, the 5th indicator is the average
value of the immediate costs (Eqs.2 and3) associated to the
water supply and flood control objective, respectively. The
table shows that although the two downstream models are
generally quite accurate, the SonTay model does not perform
very well on low flow values (see lines 3 and 4), which re-
flects into a significant underestimation of the water supply
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Table 1. Performance indicators of the downstream models (His: historical data; ST: SonTay model; HN: Hanoi model) over the period
1995–2004.

Indicators Unit His ST

1 R2 (coefficient of determination) – 1 0.956
2 MAE (maximum absolute error) m3 s−1 0 3986
3 R2 (q < 1046 m3 s−1) – 1 0.662
4 MAE (q < 1046 m3 s−1) m3 s−1 0 136
5 Avg. daily weighted squared deficit (m3 s−1)2 1728 887
6 Avg. yearly deficit (m3 s−1) yr−1 902 737
7 Avg. no of days of deficit per year days yr−1 4 5.6
8 Max consecutive days of deficit days yr−1 28 22

Indicators Unit His HN

1 R2 (coefficient of determination) – 1 0.985
2 MAE (maximum absolute error) (cm) 0 21
3 R2 (h > 950 cm) – 1 0.805
4 MAE (h > 950 cm) (cm) 0 23
5 Avg. daily weighted squared exceedance (cm)2 890 902
6 Avg. yearly exceedance cm yr−1 1430 1503
7 Avg. no of days ofh > 950 cm per year days yr−1 16 16
8 Max consecutive days ofh > 950 cm days 19 18

immediate cost indicator (line 5) and might undermine the
comparison between historical and simulated performances.
To overcome the problem, from now on when referring to the
historical system performances we will not refer to the his-
torical data of deficit in the water supply (and hydropower
production and flood objective) but rather to the indicator
values computed by our model when fed by historical data
of Thao and Lo flows and HoaBinh storage and release (see
Fig. 2).

3 Re-operation of the HoaBinh reservoir by MOGA

After modelling the system, the subsequent step of our study
is to analyze the historical operation of the HoaBinh reser-
voir. The analysis of the available data, from 1995 (the date
when the reservoir filling can be considered completed) to
2004, shows that the HoaBinh reservoir was operated ac-
cording to a seasonal strategy. From January to June the
reservoir release ranges from 500 to 2000 m3 s−1, which is
generally enough to support the water supply at SonTay. In
fact, the water demand is not satisfied only 56 days in these
11 yr. In this period, the reservoir release is generally higher
than the natural flow of the Da River and, correspondingly,
the HoaBinh level decreases of about 25–30 m in six months
(see top panel in Fig.3). The decrease in the HoaBinh
level is favorable for flood control as the reservoir reaches
its minimum level just by the beginning of June, in antic-
ipation of the floods that may occur in July and especially

August. From September to October, as the threat of floods
diminishes, the reservoir is refilled and by the beginning of
November the full capacity, and thus the maximum hydraulic
head, is reached again. Notice that on the 1 November, when
the transition from the wet to the dry season takes place,
the HoaBinh reservoir is always at full capacity, whereas at
the dry-to-wet transition (1 June), the HoaBinh level varies
between 77.5 and 96.2 m depending on the year, meaning
that occasionally water is transferred from one season to the
other, in order to maintain the hydraulic head as high as pos-
sible. It follows that, while it is possible to simulate and op-
timize the system management over one year starting from
the 1 November with the storage at full capacity, disconnect-
ing the dry and wet season on the 1 June would unnecessar-
ily limit the potential for optimizing the storage value at the
transition. This point will be confirmed also in the following
simulation results under optimized operating policies.

The first question addressed by our study is whether the
application of optimal control would have improved the sys-
tem performances over the evaluation horizon 1995–2004.
Precisely, our goal is to design one or more operating rules
that prove Pareto-dominant over the historical operation. To
this purpose, we used Multi-Objective Genetic Algorithms
(MOGA), which are an effective and rather simple-to-apply
method for multi-objective stochastic optimization (for ap-
plication of MOGA to reservoir operation seeOliveira et al.
(1997) or Pianosi et al.(2011); for a review of other reser-
voir optimization methods, seeLabadie(2004) or Castel-
letti et al. (2008)). The idea is to select a suitable function
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Fig. 3. Yearly pattern of the HoaBinh level with historical operation
(top panel), MOGA-19 policy (middle panel) and DDP-21 (bottom
panel) over the evaluation horizon 1995–2004.

family for the operating rule and apply MOGA to determine
the function parameters that minimize the average value of
the immediate costs (Eqs.1, 2, 3) over a given horizon. In
this study, we selected Artificial Neural Network as function
family, since they guarantee high flexibility at low complex-
ity (and thus a small number of parameters to be optimized).
The release decisionut is thus given by

ut = θ0 +

µ∑
j=1

θ1,j tansig
(
θ2,j st + θ3,j cos(2 π/T t)

+ θ4,j sin (2 π/T t) + θ5,j

)
(8)

where the network inputs are the reservoir storagest and the
time indext , T = 365 (days) is the system’s period of cyclo-
stationarity,µ is the number of tangent sigmoid neurons in
the hidden layer, andθ0, θ1,j , ...,θ5,j (j = 1, ...,µ) are the net-
work parameters. The three-objective optimization problem
is

min

θ

[
1

h

h−1∑
t=0

g
hyd
t+1,

1

h

h−1∑
t=0

g
sup
t+1,

1

h

h−1∑
t=0

gflo
t+1

]
(9)

wheret = 0 andt =h − 1 are the first and last day in the op-
timization horizon;ghyd

t+1, g
sup
t+1 andgflo

t+1 are the immediate
costs defined in Sect.2.1, whose value is computed as a func-
tion of the parametersθ = |θ0, θ1,1, ..., θ5,µ| of the operating
rule (Eq.8) by simulation of the model described in Sect.2.2.

In MOGA, each candidate solutionθ to problem (Eq.9)
is regarded as the genome (“chromosome”) of an “individ-
ual”. MOGA starts from a randomly selected population of
N “individuals”. The “fitness” (average value of the imme-
diate costs) of each individual is tested by simulation of the
system under historical flows of the upper Da, Thao and Lo
River and the operating policy (Eq.8) whereθ is the individ-
ual’s “chromosome”. Then, a new population is generated
by selection, crossover and mutation, and the process is re-
peated for a prescribed number of iterations. In this study,
selection, crossover and mutation are performed according
to the Non-dominated Sorting Genetic Algorithm NSGA II
(Deb et al., 2002), while the selection of the initial popula-
tion relies on ideas byPianosi et al.(2011). Notice that under
this approach, observed flows are used for system simulation
but they are not exploited in the operating rule, which uses
the minimum information (storage and time) that is actually
available to the manager in real-world.

To make a fair comparison with historical operation, in
the optimization process the system simulation uses histori-
cal discharges over the period 1957–1978 (optimization hori-
zon) and the final population is then re-simulated over the
period 1995–2004 (evaluation horizon). Table2 reports the
average value of the three immediate costs over such horizon
with an ANN withµ = 6 neurons (population size of 600 in-
dividuals evolved for 2000 iterations; results in the table refer
to the subset of solutions that proved Pareto-dominant over
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Fig. 4. Top panel: average value of the immediate costs over the
horizon 1995–2004 under historical operation (red), operating poli-
cies optimized by MOGA (blue) and by DDP (cyan). Bottom panel:
zoom of the box in the top panel.

the historical operation). They are also represented in the top
panel of Fig.4 by the blue circles. Here, the circle size is
proportional to the average hydropower cost (Eq.1) changed
in sign (so, the bigger the marker the higher the hydropower
production). The red circle refers to the historical perfor-
mance estimated by model simulation under historical flows
(see discussion in Sect.2.2). Cyan circles will be discussed
in the next section.

All the reported MOGA solutions are Pareto-dominant
over the historical operation and Pareto-efficient among each
other. From the hydropower production standpoint, the best
solution is MOGA-8, whose energy design indicator is−32.0
(historical value is−26.3). According to Eq. (1) this figure
represents the average daily production differently weighted
depending on the season; the corresponding average annual
production is 8.35 TWh per year (historical value is 7.82).
The performances in terms of water supply and flood con-
trol are just slightly better than historical. From the water
supply standpoint, several solutions (e.g. MOGA-1, 2, 6, 9,
11, 17) provide very good performances, reducing the water
shortage to almost zero while maintaining a high hydropower

Table 2. MOGA results: average value of the immediate costs un-
der different network parameterizations with 6 neurons (evaluation
horizon 1995–2004).

Policy hyd sup flo
GWh (m3 s−1)2 cm2

History −26.3 887 902
MOGA-1 −31.7 24 899
MOGA-2 −30.0 33 506
MOGA-3 −30.7 324 507
MOGA-4 −30.9 575 506
MOGA-5 −31.3 530 576
MOGA-6 −30.4 30 612
MOGA-7 −31.0 269 704
MOGA-8 −32.0 528 886
MOGA-9 −31.7 23 900
MOGA-10 −30.5 579 481
MOGA-11 −30.3 15 610
MOGA-12 −29.3 326 475
MOGA-13 −31.6 759 613
MOGA-14 −31.6 365 679
MOGA-15 −31.0 320 720
MOGA-16 −28.8 653 417
MOGA-17 −31.0 31 581
MOGA-18 −31.2 112 799
MOGA-19 −29.1 649 420
MOGA-20 −29.6 570 462

production and sligthly reducing floods in Hanoi. Other so-
lutions, e.g. MOGA-16 and 19, are better for flood control
at the price of a more limited improvement for the other two
objectives.

The analysis of the system trajectories provides more in-
sights about the MOGA solutions. For instance, the middle
panel in Fig.3 shows the yearly pattern of the HoaBinh level
produced by MOGA-19. It shows that MOGA-19 uses a sea-
sonal strategy similar to the historical operation (top panel)
but it can keep the reservoir at full capacity (117 m) for a
longer period, which increase the hydraulic head and thus
hydropower production. Figure5 compares the water level
in Hanoi during the 1996 flood under the historical opera-
tion (red) and the MOGA-19 policy (blue). It can be seen
that MOGA-19 can reduce the first level peak in July (from
10.6 to 9.78 m) and reduce the duration of the second flood-
ing in August (from 13 to 8 days above the flooding thresh-
old of 9.5 m). Although the improvement with respect to
the historical operation is significant, there seems to exists
large space for further improvement of the operating policy
in terms of flood control. Now the question arises whether
better policies for flood control were not found due to struc-
tural constraints (the storing capacity is not sufficient to com-
pletely control floods in Hanoi) or to an imperfect informa-
tion system (the inputs to the operating rule are not sufficient
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Fig. 5. Water level in Hanoi in the 1996 flood season (June
to September) under historical operation (red), MOGA-19 policy
(blue) and by DDP-21 (cyan). The black line is the flooding thresh-
old in Hanoi.

to anticipate the flood and react properly). This question will
be addressed in the next section.

4 Assessing the upper bound of system performances by
DDP

To assess the loss in performances due to the system physical
limits and the contribution from limited forecasting capacity,
we run a final simulation experiment assuming perfect in-
formation system, that is, full knowledge of all future flows
from the upper Da River and the tributaries Lo and Thao.
The associated upper bound of performances can be derived
by solving a deterministic optimal control problem, i.e. find-
ing the trajectory of release decisions (release scheduling)
u = |u0, u1, ..., uh−1| that minimizes the average aggregate
cost under historical flow pattern of the Da, Thao and Lo
River. The (single-objective) deterministic control problem
is

min

u

(
λ1

1

h

h−1∑
t=0

g
hyd
t+1 + λ2

1

h

h−1∑
t=0

g
sup
t+1 + λ3

1

h

h−1∑
t=0

gflo
t+1

)
(10)

wheret = 0 andt =h − 1 are the first and last day in the op-
timization horizon;ghyd

t+1, g
sup
t+1 andgflo

t+1 are the immediate
costs defined in Sect.2.1, whose value is computed as a func-
tion of the release schedulingu by simulation of the model
described in Sect.2.2; and λ1, λ2, λ3 are the aggregation
weights. For a given combination of weights, the associ-
ated single-objective problem (Eq.10) can be solved by De-
terministic Dynamic Programming (DDP). By changing the
weight values, different tradeoffs between the objectives are
defined and the Pareto-optimal solutions are found.

To exclude the effects of the boundary conditions, the
optimization horizon is larger than the evaluation horizon

Table 3. DDP results: average value of the immediate costs under
different weight combinations (evaluation horizon 1995–2004).

Policy λ1 λ2 λ3 hyd sup flo
GWh (m3 s−1)2 cm2

History – – – −26.3 887 902
DDP-1 1.000 0.000 0.000 −32.1 10 083 1927
DDP-2 0.000 1.000 0.000 −27.4 0 1487
DDP-3 0.000 0.000 1.000 −26.4 0 75
DDP-4 0.100 0.460 0.440 −31.9 35 417
DDP-5 0.100 0.490 0.410 −31.9 33 436
DDP-6 0.100 0.520 0.380 −31.9 31 447
DDP-7 0.100 0.540 0.360 −31.9 29 456
DDP-8 0.100 0.550 0.350 −31.9 28 468
DDP-9 0.100 0.580 0.320 −31.9 26 502
DDP-10 0.100 0.610 0.290 −31.9 24 523
DDP-11 0.100 0.640 0.260 −31.9 22 580
DDP-12 0.100 0.670 0.230 −31.9 20 608
DDP-13 0.100 0.700 0.200 −32.0 18 662
DDP-14 0.100 0.800 0.100 −32.0 14 860
DDP-15 0.050 0.450 0.500 −31.8 10 190
DDP-16 0.030 0.480 0.490 −31.7 5 129
DDP-17 0.010 0.490 0.500 −31.6 1 89
DDP-18 0.010 0.290 0.700 −31.6 2 84
DDP-19 0.005 0.445 0.550 −31.5 0 80
DDP-20 0.005 0.195 0.800 −31.5 2 78
DDP-21 0.001 0.099 0.900 −31.4 0 75

(1995–2004). Precisely, the optimization horizon starts some
months earlier (1 November 1994) so that the indicator val-
ues are not affected by the initial storage value, and ends one
year later (31 December 2005) to cut off the impact of the
penalty over the final system state, which in Eq. (10) is im-
plicitly set to zero for all possible storage values, as if it were
indifferent in ending up at timet =h with the HoaBinh com-
pletely full or empty or any value in between. The assump-
tion is obviously incorrect, and during optimization it brings
to selecting release schedulings that overexploit the available
storage as the end of the optimization horizon approaches.

The average value of the three immediate costs over the
evaluation horizon are displayed in Table3 and represented
by cyan circles in Fig.4. It is seen that if only power pro-
duction is considered (DDP-1), the value of energy design
indicator is−32.1, slightly better than the best MOGA so-
lution for hydropower (MOGA-8) and definitely lower than
history. However, the immediate costs of deficit and flood
are worse. The policy optimized for water supply only
(DDP-2) can completely avoid water shortages (the average
cost is zero), while the policy optimized for flood control
(DDP-3) produces an average cost of 75. The other solu-
tions in the table consider more than one objective at the
time and produce different tradeoffs. Two groups of solu-
tions can be distinguished. Policies from DDP-4 to DDP-
14 produce flood and water supply costs similar to those
of MOGA (see also bottom panel of Fig.4) while produc-
ing more hydropower. Policies from DDP-15 to DDP-21
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produce slightly less hydropower but can dramatically im-
prove flood control. Also notice that under the (ideal) deter-
ministic assumption, the conflict among objectives is mild,
and solutions exist, e.g. DDP-21, that are very close to the
Utopia point (−32.1, 0, 75).

The yearly pattern of the HoaBinh level produced by DDP-
21 is plotted in the bottom panel in Fig.3. Again, a seasonal
pattern can be clearly seen, though the water level in the flood
season (June–August) is generally higher because DDP ex-
ploits the perfect knowledge of future flows to reduce the
reservoir level just in anticipation of the flood events, while
the historical and MOGA operations keep the reservoir level
low also in those years when floods did not occur. Finally,
Fig. 5 compares the water level in Hanoi during the 1996
flood under historical operation (red), MOGA-19 (blue) and
DDP-21 (cyan). It can be seen that DDP-21 can keep the wa-
ter level below the threshold during the first flood peak and
significantly reduce the peak level during the second, how-
ever the flooding cannot be completely avoided even with
perfect knowledge of all future flows. In fact, the minimum
average cost for the flood objective under DDP is not zero
but 75.

To understand the reason, we ran a simulation of the down-
stream model setting the release from the HoaBinh to zero for
all time instants, i.e. as if the Da River and HoaBinh reser-
voir did not exist. Figure6 shows the scatter plot of water
levels at Hanoi under this assumption and with HoaBinh re-
leases under DDP-21. It shows that (i) some flood events
in Hanoi occurring under solution DDP-21 are in fact pro-
duced by HoaBinh releases since they would not occur if the
releases were zero (box A); (ii) some flood events would oc-
cur even if the release of the HoaBinh reservoir were zero
(box B). In the former case, flooding is not avoided because
of limited storing capacity of the HoaBinh reservoir, in the
latter, flooding does not depend on the HoaBinh release but
it is caused by the uncontrolled Lo and Thao tributaries. The
result is consistent with the policy undertaken by the Viet-
namese Government to expand the storing capacity by two
new reservoirs (see Fig.1): the SonLa reservoir upstream of
the HoaBinh reservoir, which will increase the storing capac-
ity along the Da River, and the TuyenQuang reservoir on the
Lo River, completed in 2009, which allows for regulation of
the discharge from that tributary too.

5 Conclusions

The paper presents an application of stochastic (MOGA) and
deterministic (DDP) optimization methods to analyze the
tradeoff between hydropower production, flood control and
water supply in the Red River Basin, the second largest basin
of Vietnam, and explore the room for improvement of the
current management of the main infrastructure in the basin,
the HoaBinh reservoir.
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Fig. 6. Water level at Hanoi when the HoaBinh release is perma-
nently equal to zero (horizontal axis) and produced by DDP-21 (ver-
tical axis).

Results show that current reservoir operation can be
consistently improved with respect to all three objectives.
Several operating policies were found by MOGA that would
have improved the historical system performances over the
evaluation horizon from 1995 to 2004 for different trade-
offs. In general, hydropower production can be significantly
increased and water shortages almost completely avoided;
floods in Hanoi may also be reduced but at the price of a
more limited improvement in the other two objectives. The
analysis of one of the MOGA policy, chosen among the most
favourable to the flood control objective, shows that the mag-
nitude and duration of flooding in Hanoi (measured in terms
of exceedence of the water level threshold) can be reduced
while producing about 8.35 TWh per year (historical value
being 7.82 TWh per year). Further research should be de-
voted to more accurately evaluate the improvement obtained
on the water supply objective and the relatively mild con-
flict with the other operation objectives. This positive result
might need to be confirmed when new data becomes avail-
able to improve the accuracy of the nominal water demand
and the flow routing model of the downstream river network,
possibly testing more complex flow routing models.

The operating policies proposed in this paper consider
only reservoir storage and time of the year, i.e. the minimum
possible information. Further improvement, especially on
flood control, may be expected if a larger information system
is adopted, e.g. including lagged flow values, meteorological
observations or flow forecast. To assess the upper bound of
this improvement we design the optimal operation of the sys-
tem assuming perfect information is available. To this end,
we applied DDP to design several operating policies under
the ideal assumption of perfect knowledge of all future flows.
Results show that all three objectives can be further improved
with respect to the policies designed by MOGA and espe-
cially flood control. However, even under this ideal assump-
tion, flooding in Hanoi could not be completely avoided. To
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understand the reason, we analyzed the contribution to flood
formation from the different tributary rivers and demonstrate
that, depending on the flood event, limited flood control abil-
ity may be due to insufficient storage capacity in the HoaBinh
reservoir or unregulated flow from other tributaries in the
RRB, which motivates for the construction of new reservoirs
upstream of the HoaBinh and on other rivers.

Further research should also include analysis of the im-
pacts of existing and planned reservoirs on other issues fur-
ther to the three objectives considered in this study. Espe-
cially, the impacts of reservoirs on downstream flow regime
and thus geomorphology and ecohydrology, including the
erosion processes and ecosystem conservation issues, would
deserve further investigation.
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