295 research outputs found

    Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid

    Get PDF
    Background Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC. Materials and Methods Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included. Results Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%). Conclusions There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC

    Evaluating the Effects of Cutoffs and Treatment of Long-range Electrostatics in Protein Folding Simulations

    Get PDF
    The use of molecular dynamics simulations to provide atomic-level descriptions of biological processes tends to be computationally demanding, and a number of approximations are thus commonly employed to improve computational efficiency. In the past, the effect of these approximations on macromolecular structure and stability has been evaluated mostly through quantitative studies of small-molecule systems or qualitative observations of short-timescale simulations of biological macromolecules. Here we present a quantitative evaluation of two commonly employed approximations, using a test system that has been the subject of a number of previous protein folding studies–the villin headpiece. In particular, we examined the effect of (i) the use of a cutoff-based force-shifting technique rather than an Ewald summation for the treatment of electrostatic interactions, and (ii) the length of the cutoff used to determine how many pairwise interactions are included in the calculation of both electrostatic and van der Waals forces. Our results show that the free energy of folding is relatively insensitive to the choice of cutoff beyond 9 Å, and to whether an Ewald method is used to account for long-range electrostatic interactions. In contrast, we find that the structural properties of the unfolded state depend more strongly on the two approximations examined here

    The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

    Get PDF
    Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins

    The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments

    Get PDF
    The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the A\u3b240 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer's disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements

    Analyzing and Biasing Simulations with PLUMED

    Get PDF
    This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques

    Trends in template/fragment-free protein structure prediction

    Get PDF
    Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward

    Measurement of Trilinear Gauge Couplings in e+ee^+ e^- Collisions at 161 GeV and 172 GeV

    Get PDF
    Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for WWVWWV couplings (V=Z,γV=Z, \gamma) are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the WWWW final state in which one WW decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral ZVγZV\gamma couplings from an analysis of the reaction \eegi

    Search for neutral heavy leptons produced in ZZ decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm) have been searched for using data collected by the DELPHI detector corresponding to 3.3 × 106 hadronic Z0 decays at LEP1. Four separate searches have been performed, for short-lived νm production giving monojet or acollinear jet topologies, and for long-lived νm giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(Z0 → νmν̄) of about 1.3 × 10-6 at 95% confidence level for νm masses between 3.5 and 50 GeV/c2. Outside this range the limit weakens rapidly with the νm mass. The results are also interpreted in terms of limits for the single production of excited neutrinos. © Springer-Verlag 1997
    corecore