1,021 research outputs found

    Performance calculations for 1000 MWe MHD/steam power plants

    Get PDF
    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement

    Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia

    Get PDF
    A detailed spectroscopic analysis of SN 1986G has been performed. SN 1986G `bridges the gap' between normal and sub luminous type Ia supernova (SNe Ia). The abundance tomography technique is used to determine the abundance distribution of the elements in the ejecta. SN 1986G was found to be a low energy Chandrasekhar mass explosion. Its kinetic energy was 70% of the standard W7 model (0.9x1051^{51}erg). Oxygen dominates the ejecta from the outermost layers down to ∼\sim9000kms−1^{-1} , intermediate mass elements (IME) dominate from ∼\sim 9000kms−1^{-1} to ∼\sim 3500kms−1^{-1} with Ni and Fe dominating the inner layers <∼<\sim 3500kms−1^{-1}. The final masses of the main elements in the ejecta were found to be, O=0.33M, IME=0.69M, stable NSE=0.21M, 56^{56}Ni=0.14M. An upper limit of the carbon mass is set at C=0.02M. The spectra of SN1986G consist of almost exclusively singly ionised species. SN1986G can be thought of as a low luminosity extension of the main population of SN Ia, with a large deflagration phase that produced more IMEs than a standard SN Ia.Comment: Accepted for publication in MNRAS, update

    Velocity, temperature, and electrical conductivity profiles in hydrogen-oxygen MHD duct flows

    Get PDF
    Two-dimensional duct flow computations for radial distributions of velocity, temperature, and electrical conductivity are reported. Calculations were carried out for the flow conditions representative of a hydrogen-oxygen combustion driven MHD duct. Results are presented for: profiles of developing flow in a smooth duct, and for profiles of fully developed pipe flow with a specified streamwise shear stress distribution. The predicted temperature and electrical conductivity profiles for the developing flows compare well with available experimental data

    Velocity and temperature distributions of coal-slag layers on magnetohydrodynamic generators walls

    Get PDF
    Approximate analytical expressions are derived for the velocity and temperature distributions in steady state coal slag deposits flowing over MHD generator walls. Effects of slag condensation and Joule heating are included in the analysis. The transport conditions and the slag temperature at the slag-gas interface are taken to be known parameters in the formulation. They are assumed to have been predetermined either experimentally or from the slag properties and the gas dynamic calculations of the free stream flow. The analysis assumes a power law velocity profile for the slag and accounts for the coupling between the energy and momentum conservation equations. Comparisons are made with the more exact numerical solutions to verify the accuracy of the results

    MHD performance calculations with oxygen enrichment

    Get PDF
    The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined

    Performance optimization of an MHD generator with physical constraints

    Get PDF
    A method to optimize the Faraday MHD generator performance under a prescribed set of electrical and magnet constraints is described. The results of generator performance calculations using this technique are presented for a very large MHD/steam plant. The differences between the maximum power and maximum net power generators are described. The sensitivity of the generator performance to the various operational parameters are presented

    An XMM-Newton look at the strongly variable radio-weak BL Lac Fermi J1544-0639

    Full text link
    Fermi J1544-0639/ASASSN-17gs/AT2017egv was identified as a gamma-ray/optical transient on May 15, 2017. Subsequent multiwavelength observations suggest that this source may belong to the new class of radio-weak BL Lacs. We studied the X-ray spectral properties and short-term variability of Fermi J1544-0639 to constrain the X-ray continuum emission mechanism of this peculiar source. We present the analysis of an XMM-Newton observation, 56 ks in length, performed on February 21, 2018. The source exhibits strong X-ray variability, both in flux and spectral shape, on timescales of ~10 ks, with a harder-when-brighter behaviour typical of BL Lacs. The X-ray spectrum is nicely described by a variable broken power law, with a break energy of around 2.7 keV consistent with radiative cooling due to Comptonization of broad-line region photons. We find evidence for a `soft excess', nicely described by a blackbody with a temperature of ~0.2 keV, consistent with being produced by bulk Comptonization along the jet.Comment: 11 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Extending the 'Energetic Scaling of Relativistic Jets From Black Hole Systems' to Include γ-ray-loud X-ray Binaries

    Get PDF
    We show that the jet power P_j and geometrically corrected \gamma-ray luminosity L_\gamma for the X-ray binaries (XRBs) Cygnus X-1, Cygnus X-3, and V404 Cygni, and \gamma-ray upper limits for GRS 1915+105 and GX339-4, follow the universal scaling for the energetics of relativistic jets from black hole (BH) systems found by Nemmen et al. (2012) for blazars and GRBs. The observed peak \gamma-ray luminosity for XRBs is geometrically corrected; and the minimum jet power is estimated from the peak flux density of radio flares and the flare rise time. The L_\gamma-P_j correlation holds across \sim 17 orders of magnitude. The correlation suggests a jet origin for the high energy emission from X-ray binaries, and indicates a common mechanism or efficiency for the high energy emission 0.1-100 GeV from all relativistic BH systems

    Characteristic velocities of stripped-envelope core-collapse supernova cores

    Full text link
    The velocity of the inner ejecta of stripped-envelope core-collapse supernovae (CC-SNe) is studied by means of an analysis of their nebular spectra. Stripped-envelope CC-SNe are the result of the explosion of bare cores of massive stars (≥8\geq 8 M⊙_{\odot}), and their late-time spectra are typically dominated by a strong [O {\sc i}] λλ\lambda\lambda6300, 6363 emission line produced by the innermost, slow-moving ejecta which are not visible at earlier times as they are located below the photosphere. A characteristic velocity of the inner ejecta is obtained for a sample of 56 stripped-envelope CC-SNe of different spectral types (IIb, Ib, Ic) using direct measurements of the line width as well as spectral fitting. For most SNe, this value shows a small scatter around 4500 km s−1^{-1}. Observations (<100< 100 days) of stripped-envelope CC-SNe have revealed a subclass of very energetic SNe, termed broad-lined SNe (BL-SNe) or hypernovae, which are characterised by broad absorption lines in the early-time spectra, indicative of outer ejecta moving at very high velocity (v≥0.1cv \geq 0.1 c). SNe identified as BL in the early phase show large variations of core velocities at late phases, with some having much higher and some having similar velocities with respect to regular CC-SNe. This might indicate asphericity of the inner ejecta of BL-SNe, a possibility we investigate using synthetic three-dimensional nebular spectra.Comment: 14 pages, 10 figures, MNRAS accepte
    • …
    corecore