145 research outputs found

    Environment of Er in a-Si:H: co-sputtering versus ion implantation

    Get PDF
    We report a comparative Extended X-Ray Fine Structure (EXAFS) study of Er in a-Si:H prepared by Er implantation in a-Si:H and by co-sputtering undergoing the same cumulative annealing processes. It was found that the Er environment in as-implanted samples is formed by Si atoms, which are replaced by oxygen under annealing. In the co-sputtered samples, the initial low coordination oxygen environment evolves under thermal treatment to an Er2O3 -like neighborhood.756759Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Spin-orbit induced mixed-spin ground state in RRNiO3_3 perovskites probed by XAS: new insight into the metal to insulator transition

    Full text link
    We report on a Ni L2,3_{2,3} edges x-ray absorption spectroscopy (XAS) study in RRNiO3_3 perovskites. These compounds exhibit a metal to insulator (MIMI) transition as temperature decreases. The L3_{3} edge presents a clear splitting in the insulating state, associated to a less hybridized ground state. Using charge transfer multiplet calculations, we establish the importance of the crystal field and 3d spin-orbit coupling to create a mixed-spin ground state. We explain the MIMI transition in RRNiO3_3 perovskites in terms of modifications in the Ni3+^{3+} crystal field splitting that induces a spin transition from an essentially low-spin (LS) to a mixed-spin state.Comment: 4 pages, 4 figures, accepted as PRB - Rapid Comm. Dez. 200

    Short-range charge-order in RRNiO3_{3} perovskites (RR=Pr,Nd,Eu) probed by X-ray absorption spectroscopy

    Get PDF
    The short-range organization around Ni atoms in orthorhombic RRNiO3_{3} (RR=Pr,Nd,Eu) perovskites has been studied over a wide temperature range by Ni K-edge x-ray absorption spectroscopy. Our results demonstrate that two different Ni sites, with different average Ni-O bond lengths, coexist in those orthorhombic compounds and that important modifications in the Ni nearest neighbors environment take place across the metal-insulator transition. We report evidences for the existence of short-range charge-order in the insulating state, as found in the monoclinic compounds. Moreover, our results suggest that the two different Ni sites coexists even in the metallic state. The coexistence of two different Ni sites, independently on the RR ion, provides a common ground to describe these compounds and shed new light in the understanding of the phonon-assisted conduction mechanism and unusual antiferromagnetism present in all RRNiO3_{3} compounds.Comment: 4 pages, 3 figures, accepted PRB - Brief Report Dec.200

    Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures

    Get PDF
    Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.Comment: 5 pages, 4 figure

    Environment of Erbium in a-Si : H and a-SiOx : H

    Get PDF
    The chemical environment of Er in a-Si:H and a-SiOx:H was determined by extended x-ray absorption fine structure. Only one family of Er sites is found, coordinated on average with two to three O atoms (compared to six in Er2O3). We devised a new model for the incorporation of Er in a-Si:II and a-SiOx:H. According to the model, Er is incorporated in the form of [ErOdelta](+3-2 delta) complexes, with delta less than or equal to 3. The minimum configuration energy is achieved for delta = 3 when the valence requirements of Er are fulfilled. The complexes are low symmetry environments that allow the Er3+ luminescent transition at 1.54 mu m and make Er an acceptor in a-Si:H whereas it is donor in crystalline silicon. [S0031-9007(98)07668-6].81214652465

    Strain-dependent magnetic configurations in manganite-titanate heterostructures probed with soft X-ray techniques

    Get PDF
    We present a detailed study on the strain-induced magnetic domain structure of a (La,Sr)MnO3 thin film epitaxially grown on a BaTiO3 substrate through the use of polarization-dependent X-ray photoemission electron microscopy and X-ray absorption spectroscopy. Angular-dependent measurements allow us to detect vector magnetization on a single-domain scale, and we relate the strain-induced changes in magnetic anisotropy of the ferromagnetic film to the ferroelectric domain structure of the underlying substrate using X-ray magnetic circular and linear dichroism spectro-microscopy. Comparisons to measurements on a nearly strain free film of (La,Sr)MnO3 grown on a (La,Sr)(Al,Ta)O3 substrate illustrate that the BaTiO3 ferroelectric domain structure imprints specific domain sizes and wall orientations in the (La,Sr)MnO3/BaTiO3 artificial multiferroic heterostructure. Furthermore, a change of the BaTiO3 ferroelectric domain structure either with temperature or with applied electric field results in a corresponding change in the (La,Sr)MnO3 ferromagnetic domain structure, thus showing a possible route to obtain room-temperature electric field control of magnetic anisotropy at the nanoscal
    • …
    corecore