67 research outputs found

    Anti-angiogenesis: making the tumor vulnerable to the immune system

    Get PDF
    Ongoing angiogenesis has been shown to possess immune suppressive activity through several mechanisms. One of these mechanisms is the suppression of adhesion receptors, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin—adhesion molecules involved in leukocyte interactions—on the vascular endothelium. This phenomenon, when happening to the tumor endothelium, supports tumor growth due to escape from immunity. Since angiogenesis has this immune suppressive effect, it has been hypothesized that inhibition of angiogenesis may circumvent this problem. In vitro and in vivo data now show that several angiogenesis inhibitors are able to normalize endothelial adhesion molecule expression in tumor blood vessels, restore leukocyte vessel wall interactions, and enhance the inflammatory infiltrate in tumors. It is suggested that such angiogenesis inhibitors can make tumors more vulnerable for the immune system and may therefore be applied to facilitate immunotherapy approaches for the treatment of cancer

    Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Synthetic peptides containing the RGD sequence inhibit integrin-related functions in different cell systems. Here, we investigated the effects of synthetic Arg-Gly-Asp-Ser (RGDS) peptide on key inflammatory responses to intratracheal (<it>i.t.</it>) lipopolysaccharide (LPS) treatment and on the integrin signaled mitogen-activated protein (MAP) kinase pathway during the development of acute lung injury.</p> <p>Methods</p> <p>Saline or LPS (1.5 mg/kg) was administered <it>i.t. </it>with or without a single dose of RGDS (1, 2.5, or 5 mg/kg, i.p.), anti-α<sub>v </sub>or anti-β<sub>3 </sub>mAb (5 mg/kg, i.p.). Mice were sacrificed 4 or 24 h post-LPS.</p> <p>Results</p> <p>A pretreatment with RGDS inhibited LPS-induced increases in neutrophil and macrophage numbers, total protein levels and TNF-α and MIP-2 levels, and matrix metalloproteinase-9 activity in bronchoalveolar lavage (BAL) fluid at 4 or 24 h post-LPS treatment. RGDS inhibited LPS-induced phosphorylation of focal adhesion kinase and MAP kinases, including ERK, JNK, and p38 MAP kinase, in lung tissue. Importantly, the inhibition of the inflammatory responses and the kinase pathways were still evident when this peptide was administered 2 h after LPS treatment. Similarly, a blocking antibody against integrin α<sub>v </sub>significantly inhibited LPS-induced inflammatory cell migration into the lung, protein accumulation and proinflammatory mediator production in BAL fluid, at 4 or 24 h post-LPS. Anti-β<sub>3 </sub>also inhibited all LPS-induced inflammatory responses, except the accumulation of BAL protein at 24 h post-LPS.</p> <p>Conclusion</p> <p>These results suggest that RGDS with high specificity for α<sub>v</sub>integrins attenuates inflammatory cascade during LPS-induced development of acute lung injury.</p

    The brain is a DJ using neuropeptides as sensory crossfaders

    Get PDF
    Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.status: publishe

    Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis

    Get PDF
    The mechanisms operating in lymphocyte recruitment and homing to liver are reviewed. A literature review was performed on primary biliary cirrhosis (PBC), progressive sclerosing cholangitis (PSC), and homing mechanisms; a total of 130 papers were selected for discussion. Available data suggest that in addition to a specific role for CCL25 in PSC, the CC chemokines CCL21 and CCL28 and the CXC chemokines CXCL9 and CXCL10 are involved in the recruitment of T lymphocytes into the portal tract in PBC and PSC. Once entering the liver, lymphocytes localize to bile duct and retain by the combinatorial or sequential action of CXCL12, CXCL16, CX3CL1, and CCL28 and possibly CXCL9 and CXCL10. The relative importance of these chemokines in the recruitment or the retention of lymphocytes around the bile ducts remains unclear. The available data remain limited but underscore the importance of recruitment and homing

    The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

    No full text
    Regulation of chemoreceptor gene expression in response to environmental or developmental cues provides a mechanism by which animals can alter their sensory responses. Here we demonstrate a role for the daf-7 TGF-β pathway in the regulation of expression of a subset of chemoreceptor genes in Caenorhabditis elegans. We describe a novel role of this pathway in maintaining receptor gene expression in the adult and show that the DAF-4 type II TGF-β receptor functions cell-autonomously to modulate chemoreceptor expression. We also find that the alteration of receptor gene expression in the ASI chemosensory neurons by environmental signals, such as levels of a constitutively produced pheromone, may be mediated via a DAF-7-independent pathway. Receptor gene expression in the ASI and ASH sensory neurons appears to be regulated via distinct mechanisms. Our results suggest that the expression of individual chemoreceptor genes in C. elegans is subject to multiple modes of regulation, thereby ensuring that animals exhibit the responses most appropriate for their developmental stage and environmental conditions

    Structural and Functional Recovery of Sensory Cilia in <i>C</i>. <i>elegans</i> IFT Mutants upon Aging

    No full text
    <div><p>The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in <i>C</i>. <i>elegans</i> transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.</p></div
    • …
    corecore