9,739 research outputs found

    Optical response of two-dimensional few-electron concentric double quantum rings: A local-spin-density-functional theory study

    Get PDF
    We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a perpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.Comment: To be published in Physical Review

    Spin-orbit effects on the Larmor dispersion relation in GaAs quantum wells

    Get PDF
    We have studied the relevance of spin-orbit coupling to the dispersion 00009 relation of the Larmor resonance observed in inelastic light scattering and electron-spin resonance experiments on GaAs quantum wells. We show that the spin-orbit interaction, here described by a sum of Dresselhaus and Bychkov-Rashba terms, couples Zeeman and spin-density excitations. We have evaluated its contribution to the spin splitting as a function of the magnetic field BB, and have found that in the small BB limit, the spin-orbit interaction does not contribute to the spin splitting, whereas at high magnetic fields it yields a BB independent contribution to the spin splitting given by 2(λR2λD2)2(\lambda_R^2-\lambda_D^2), with λR,D\lambda_{R,D} being the intensity of the Bychkov-Rashba and Dresselhaus spin-orbit terms.Comment: To be published in Physical Review

    Spin and density longitudinal response of quantum dots in time-dependent local-spin-density approximation

    Get PDF
    The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local spin density functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single particle excitations have a sizeable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (ν\nu) related. We have found that the spin dipole mode is especially soft for even ν\nu values, becoming unstable for magnetic fields in the region 1<ν21 < \nu \leq 2. Results for selected number of electrons and confining potentials are discussed. An analytical model which reproduces the main features of the microscopic spectra has been developed.Comment: We have added some new references and minor changes on the mnuscript have been mad

    Quasi-ordinary power series and their zeta functions

    Get PDF
    The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function ZDL(h,T)Z_{\text{DL}}(h,T) of a quasi-ordinary power series hh of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent ZDL(h,T)=P(T)/Q(T)Z_{\text{DL}}(h,T)=P(T)/Q(T) such that almost all the candidate poles given by Q(T)Q(T) are poles. Anyway, these candidate poles give eigenvalues of the monodromy action of the complex of nearby cycles on h1(0).h^{-1}(0). In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if hh is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.Comment: 74 page

    Quasi-ordinary singularities and Newton trees

    Get PDF
    In this paper we study some properties of the class of nu-quasi-ordinary hypersurface singularities. They are defined by a very mild condition on its (projected) Newton polygon. We associate with them a Newton tree and characterize quasi-ordinary hypersurface singularities among nu-quasi-ordinary hypersurface singularities in terms of their Newton tree. A formula to compute the discriminant of a quasi-ordinary Weierstrass polynomial in terms of the decorations of its Newton tree is given. This allows to compute the discriminant avoiding the use of determinants and even for non Weierstrass prepared polynomials. This is important for applications like algorithmic resolutions. We compare the Newton tree of a quasi-ordinary singularity and those of its curve transversal sections. We show that the Newton trees of the transversal sections do not give the tree of the quasi-ordinary singularity in general. It does if we know that the Newton tree of the quasi-ordinary singularity has only one arrow.Comment: 32 page

    Vertically coupled double quantum rings at zero magnetic field

    Get PDF
    Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.Comment: 18 pages, 8 figures, submitted to Physical Review

    Finite size effects in adsorption of helium mixtures by alkali substrates

    Full text link
    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.Comment: 12 pages, and 12 figures (PNG format
    corecore