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The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using
local-spin-density-functional theory. We have studied the coupling between the collective spin and density
modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle
excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin
operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which
is clearly filling factor (n) related. We have found that the spin dipole mode is especially soft for even-n
values. Results for selected numbers of electrons and confining potentials are discussed.
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I. INTRODUCTION

The far-infrared~FIR! response of quantum dots is a su
ject of current interest since the experiments carried out
Sikorski and Merkt1 and by Demelet al.2 These experiments
and subsequent theoretical work~see Refs. 3–8 and refer
ences therein! showed that the excitation spectrum of qua
tum dots in the FIR region is dominated by the dipole ed
magnetoplasmon peak that splits into two differentB disper-
sion branches when a magnetic fieldB is applied perpendicu
larly to the dot. These peaks are density~charge! collective
modes excited by the operatorDr5( i 51

N xi . In the case of
harmonic confinement by the potential1

2 mv0
2r2, as a conse-

quence of Kohn’s theorem9 the density mode is not couple
to any other mode, and the dipole operatorDr excites only

two collective states at the energiesv65Av0
21 1

4 vc
2

6 1
2 vc , wherevc is the cyclotron frequency. If the confinin

potential is not harmonic, Kohn’s theorem does not hold.
the one hand, the energy of the modes depends on the n
ber of electrons in the dot, and, on the other hand, a ric
excitation spectrum appears.

Raman spectroscopy has made it possible to observ
the same sample single-particle~sp!, charge, and spin
density excitations,10,11 whose evolution as a function ofB
has been studied in recent experiments. This has reve
several interesting features of the sp~Ref. 12! and of spin
collective excitations13 in quantum dots. Limiting ourselve
to the latter, the experiments have determined that the
mode lies very close in energy to the uncorrelated sing
electron excitations, and that magnetoplasmons can als
detected using spin-dependent probes. In addition, it
been experimentally determined that the spin mode ha
much lower energy than the charge mode. These facts
stitute the body of experimental results that any theory a
PRB 590163-1829/99/59~23!/15290~11!/$15.00
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ing at a quantitative simultaneous description of spin- a
charge-density collective modes in quantum dots should
produce.

The dipole spin response function for unpolarized qu
tum dots at zero magnetic field was recently addressed
two of us.14 In the FIR regime, it has been found that th
response is dominated by a low-energy collective dipole s
mode excited by the operatorDm5( i 51

N xisz
i , wherexi and

sz
i are Cartesian components of the position and spin v

tors, andN is the number of electrons in the dot. Simila
modes have been described in atomic nuclei,15 and in alkali-
metal clusters.16,17

The aim of the present work is to extend our previo
study to the case of a quantum dot submitted to a perp
dicular static magnetic field, which originates aB-dependent
spin polarization in the ground state of the dot. We w
explicitly show that this not only causes the splitting of t
spin dipole mode into two branches, one with negativeB
dispersion and another with a positiveB dispersion, but also
its coupling with the dipole density mode mainly excited
the operatorDr . We shall see that if the confinement is n
harmonic and the dot is polarized, that operator also exc
the dipole spin mode. Conversely, when the dot is polariz
which is the case if it has an odd number of electrons, or
most cases whenB acts on the dot, the spin response
coupled to the density response so that the external ope
Dm5( ixisz

i also excites the density mode. When the syst
is fully polarized both modes coincide, while at zero pola
ization they are uncoupled.

To this end, we have self-consistently evaluated the l
gitudinal response of the dot in the time-dependent loc
spin-density approximation~TDLSDA!. By longitudinal we
mean an external field which is either spin independent
dependent on the spin component parallel to the magn
15 290 ©1999 The American Physical Society
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PRB 59 15 291SPIN AND DENSITY LONGITUDINAL RESPONSE OF . . .
field, i.e., thez component. We present results obtained
selected numbers of electrons and confining potentials. S
cifically, we have used a harmonic oscillator potential to d
scribe dots withN55 and 25, and a disk-confining potenti
to describe dots with 25 and 210 electrons, for which the F
response has been determined in detail.2 The results obtained
for the N55 dot have been presented as preliminary res
in Ref. 18. The ground state~gs! structure of the later two
dots in intense magnetic fields has been rece
addressed.19,20 However, to our knowledge, no sel
consistent TDLSDA calculation for a dot as large asN
5210 has been carried out before even in the density ch
nel.

To obtain correct collective modes one needs to hav
proper description of the ground state these excitations
built on. Several density-functional calculations have a
dressed this question.21–25 The LSDA we use in the presen
work is based on the exchange-correlation energy functio
employed in Ref. 21 as an input to construct their curr
density-functional theory~CDFT!. Within the range of mag-
netic fields we are interested in, we have checked that b
the LSDA and CDFT yield similar results for gs properti
other than the current density. Tests of the CDFT aga
exact and Hartree-Fock~HF! calculations have been pre
sented in Ref. 21. Tests of unrestricted HF against exac
energies in the filling factor region 2>n>1 were also pre-
sented in Ref. 26 for a small number of electrons~up to 5!.

We conclude, from the comparisons presented in
above references, that the TDLSA may yield fairly accur
results for the density and spin response in the range of m
netic fields for which experimental information is current
available. Comparison with these experiments constitute
ultimate test of this essentially parameter-free approxim
tion.
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Like Kallin and Halperin27 and MacDonald,28 who thor-
oughly studied the spin and density response of the t
dimensional electron gas~2DEG!, we mainly addressed th
longitudinal response of quantum-dot configurations cor
sponding to integer filling factors. In a few cases we ha
considered configurations which are the finite-size analog
partially filled 2DEG configurations. In these cases, the
of the TDLSDA may be questioned, since these configu
tions are believed to have very complicated, strongly cor
lated ground states. Hence one has to regard the corresp
ing results as qualitative extensions of the ones obtaine
integer filling factors. Although qualitative, these results m
yield the general trends of the excitation spectrum, and
this reason here we have considered some cases of this

To help understand the microscopic spectra, simp
methods have been developed to reproduce their gross
tures. One such method is the sum rule approach use
describe multipole density modes in quantum dots.19 Here
we present an analytical model, called vibrating poten
model~VPM!, which provides a complementary physical i
sight into the longitudinal response of quantum dots. T
VPM model has been widely used in nuclear physics29

where it was developed to describe nuclear collective mod
It has also been applied to the description of simple me
clusters.30

II. LONGITUDINAL RESPONSE

We consider a quantum dot made ofN electrons moving
in the z50 plane, where they are confined by the circu
potentialV1(r ) in the presence of a constant magnetic fie
B in the z direction. In the LSDA, the single electron wav
functions are given by the solution of the Kohn-Sham~KS!
equations
F2
1

2
¹21

1

2
vcl z1

1

8
vc

2r 21V1~r !1VH1Vxc1S Wxc1
1

2
g* mBBDszGwa~r ,u!5eawa~r ,u!, ~1!
e
and
ies
the
e

the

en
whereVH5*drW8r(rW8)/urW2rW8u is the Hartree potential.Vxc

5]Exc(r,m)/]rugs and Wxc5]Exc(r,m)/]mugs are the
variations of the exchange-correlation energy den
Exc(r,m) in the local approximation taken at the groun
state, andr(r ) andm(r ) are the electron and spin magne
zation densities. The exchange-correlation energy densityExc

has been constructed from the results on the nonpolar
and fully polarized 2DEG~Ref. 31! in the same way as in
Ref. 32, i.e., using the two-dimensional von Barth a
Hedin33 prescription to interpolate between both regimes.

We have used effective atomic units (\5e2/e5m51),
wheree is the dielectric constant of the semiconductor, a
m is the electron effective mass. In units of the bare elect
massme one hasm5m* me . In this system of units, the
length unit is the effective Bohr radiusa0* 5a0e/m* , and the
energy unit is the effective HartreeH* 5Hm* /e2. For GaAs
we have takene512.4,m* 50.067, andg* 520.44, which
yields a0* 597.9 Å andH* ;11.9 meV;95.6 cm21. In Eq.
y

ed

d
n

~1!, vc5eB/(mc) is the cyclotron frequency andmB

5e\/(2mec) is the Bohr magneton. The use of the sam
letter for the effective mass and the spin magnetization,
for the dielectric constant and the single-electron energ
should cause no confusion, since neither the mass nor
dielectric constant will explicitly appear in the rest of th
work.

As a consequence of circular symmetry, thewa’s are
eigenstates of the orbital angular momentuml z , i.e.,
wa(r ,u)5unls(r )e2 i l u, with l 50,61,62, . . . . The gs
electron density is given byr(r )5(anauua(r )u2, while the
gs spin magnetization density is expressed in terms of
spin of orbitala, ^sz&a , asm(r )5(ana^sz&auua(r )u2. The
numerical calculations reported in the following have be
performed at a small but finite temperatureT<0.1 K, and the
KS equations have been solved by integration inr space. The
thermal occupation probabilitiesna are determined by the
normalization condition
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N5(
a

na5(
a

1

11exp@~ea2m!/kBT#
, ~2!

which fixes the chemical potentialm. Our iterative method
works for weak and strong magnetic fields as well, for wh
the effective potential is very different. It has proved to
very robust, allowing us to handle without any problem se
eral hundreds of electrons.

Once the gs has been obtained, we determine the ind
densities originated by an external field employing line
response theory. Following Refs. 34 and 35, we can write
variationdrs induced in the spin densityrs (s[↑,↓) by an
external spin-dependent fieldF, whose nontemporal depen
dence we denote asF5(s f s(rW)us&^su:

drs~rW,v!5(
s8

E drW8xss8~rW,rW8;v! f s8~rW8!, ~3!

wherexss8 is the spin-density correlation function. In th
limit, the frequencyv corresponds to the harmonic time d
pendence of the external fieldF and of the induceddrs .
Equation~3! is a 232 matrix equation in the two-componen
Pauli space. In longitudinal response theory,F is diagonal in
this space, and we write its diagonal components as a ve
F[( f

f ↑).For the operators defined in Sec. I, we then have

↓

n

in

s

le
-

ed
-
e

tor

Dr[S x

xD and Dm[S x

2xD . ~4!

The TDLSDA assumes that electrons respond as free
ticles to the perturbing effective field, which consists of t
external plus the induced field arising from the changes p
duced by the perturbation in the gs mean field. This con
tion defines the TDLSDA correlation functionxss8 in terms
of the free-particle spin-density correlation functionxss8

(0)

through a Dyson-type integral equation

xss8~rW,rW8;v!

5xss8
(0)

~rW,rW8;v!1 (
s1s2

E drW1 drW2 xss1

(0) ~rW,rW1 ;v!

3Ks1s2
~rW1 ,rW2!xs2s8~rW2 ,rW8;v!. ~5!

The free-particle spin-correlation function at finite tempe
ture is obtained from the KS sp wave functions, energ
and occupation probabilities:
n

xss8
(0)

~rW,rW8,v!52ds,s8(
ab

wa* ~rW !wb~rW !
na2nb

ea2eb1v1 ih
wb* ~rW8!wa~rW8!. ~6!

The labela (b) refers to a sp level with spins (s8) and occupation probabilityna (nb). To simplify the analysis of the
results, we have added a small but finite imaginary parth to the energyv. This will make an average of the strength functio
by transforming thed peaks into Lorentzians of width 2h.

The kernelKss8(r
W,rW8) is the residual two-body interaction

Kss8~rW1 ,rW2!5
1

urW12rW2u
1

]2Exc~r,m!

]rs ]rs8
U

gs

d~rW12rW2!, ~7!

where

]2Exc

]rs ]rs8
U

gs

5
]2E xc

]r2 U
gs

1~hs1hs8!
]2Exc

]r ]mU
gs

1hshs8

]2E xc

]m2 U
gs

[K~r !1~hs1hs8!L~r !1hshs8I ~r !, ~8!
-
ed

tion
erm

nc-
with h↑51 andh↓521. The last expression is the definitio
of the K, L, andI functions.

When the system is not polarized, there are only two
dependent correlation functions. These arexrr and xmm,
describing, respectively, the density response toDr and the
spin response toDm . They are given by

xrr5x↑↑1x↓↓1x↑↓1x↓↑ ,
~9!

xmm5x↑↑1x↓↓2x↑↓2x↓↑ ,

and the four equations~5! reduce to two uncoupled equation
for xrr and xmm, whose kernels are given by 1/r 12
1Kd(r 12) and Id(r 12), respectively, and the free-partic
-

correlation functionx (0)5x↑↑
(0)1x↓↓

(0)52x↑↑
(0) is the same in

both channels becausex↑↑
(0)5x↓↓

(0) . This constitutes the para
magnetic limit of the longitudinal response with uncoupl
density and spin channels,14 in which the residual interaction
consists of a Coulomb direct plus an exchange-correla
terms in one case, and only of an exchange-correlation t
in the other.

When the system is polarized one no longer hasx↑↑
(0)

5x↓↓
(0) , and there are two more independent correlation fu

tions

xrm5x↑↑2x↓↓2x↑↓1x↓↑ ,
~10!

xmr5x↑↑2x↓↓1x↑↓2x↓↑ ,
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which produce the density response toDm and the spin re-
sponse toDr , respectively.

Equations~5! have been solved as a generalized ma
equation in coordinate space after performing an angular
composition ofxss8 andKss8 of the kind

Kss8~rW,rW8!5(
l

Kss8
( l )

~r ,r 8!eil (u2u8). ~11!

Only modes withl 561 couple to the external dipole field
Dr andDm . This can be readily seen performing the angu
integral in Eq.~3!. In practice, we have considered the mu
tipole expansion of the external field, using the dipole v
tors

Dr
(61)5

1

2
re6 iuS 1

1D
and ~12!

Dm
(61)5

1

2
re6 iuS 1

21D .

For a polarized system having a nonzero magnetization
the gs, thel 561 modes are not degenerate, and give rise
two excitation branches withDLz561, whereLz is the gs
orbital angular momentum.

FIG. 1. Dipole strength function~effective atomic units! of the
N55 dot as a function of frequency~meV!. Solid and dotted lines
correspond to the density response toDr and to the spin respons
to Dm , respectively. Dashed lines represent the free-part
strength function.
x
e-

r

-

in
o

The response functions corresponding to the above dip
fields have been obtained from thel 561 components of the
correlation functionsxAB

(61)(r ,r 8;v) with A,B5r,m as

aAB~v!5p2E dr1 dr2 r 1
2r 2

2
„xAB

(11)~r 1 ,r 2 ;v!

1xAB
(21)~r 1 ,r 2 ;v!…

[aAB
(11)~v!1aAB

(21)~v!. ~13!

Their imaginary parts are related to the strength functions
SAB(v)5(1/p)Im@aAB(v)#. Although the excitation energy
v and strength functions are always positive, it may be ea
verified that the following relations formally hold:

Re@aAB
(2 l )~v!#5Re@aAB

( l ) ~2v!#,
~14!

Im@aAB
(2 l )~v!#52Im@aAB

( l ) ~2v!#.

To check the numerical accuracy of the calculations
have used thef-sum rules for the dipole operators, which ca
be expressed in terms of gs quantities:36

m1
(rr)5E Srr~v!v dv5

1

2
^0u†Dr ,@H,Dr#‡u0&5

N

2
,

m1
(mm)5E Smm~v!v dv5

1

2
^0u†Dm ,@H,Dm#‡u0&5

N

2
,

le

FIG. 2. Same as Fig. 1 forN525.
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m1
(mr)5m1

(rm)5E Smr~v!v dv1E Srm~v!v dv

5^0u†Dm ,@H,Dr#‡u0&52Sz , ~15!

whereSz is the total spin of the ground state.

III. RESULTS

Figures 1–3 display the dipole strength function of t
N55, 25, and 210 dots for selectedB values. Solid lines
correspond to the density response toDr , and dotted lines to
the spin response toDm , that is toSrr and toSmm. Dashed
lines represent the free-particle strength function. For
five-electron dot we have used a parabolic confining pot
tial V1(r )5 1

2 mv0
2r 2, with v054.28 meV, and for the

other dots we have used a disk confining potential.19,20

For N525 and 210, mostB values displayed correspon
to integer filling factorsn. It was found20 that for N5210
and anR disk confining potential, these values follow the la
n52pcns /(eB) pertaining to the 2DEG, wherens
5N/(pR2) is the electron surface density. For theN525
dot, that law yieldsB53.29 T as the value at which th
system becomes fully polarized. Actually, we have fou
that the dot is in the maximum density drop~MDD! state for
3.42 T <B<3.70 T. As then51 configuration we have
taken that corresponding toB153.56 T, and have defined th
other n configurations as those corresponding to the va
Bn5B1 /n.

The results of Ref. 2 for theN525 dot seem to indicate
that a confining potential of parabolic type might be mo
adequate~see the discussion of the charge mode at the en

FIG. 3. Same as Fig. 1 forN5210.
e
n-

e

of

this section!. Consequently, we have also studied it using
harmonic confining potential withv052.78 meV to repro-
duce the experimental dipole energy atB50. In this case the
system is in the MDD state for 4.46 T<B<4.69 T. We have
taken B154.58 T and have defined the othern configura-
tions as indicated before.

The existence of a MDD state for this dot is in agreem
with the findings of Ref. 24. It is also worth remarking th
even for such a small dot,n as defined above also coincide
with the number of occupied (n,↑or ↓) bands for values up
to n55 – 6, which correspond to rather lowB intensities. In
Fig. 4 we present the strength function corresponding toN
525 with parabolic confinement.

Figures 1–4 show that in both channels the respons
B50 is concentrated within a small energy range, with o
single peak or with several closely lying fragmented pea
which exhaust most of thef-sum rule. The peak energy i
lower in the spin than in the density channel. This is due
the character of the residual interaction, which is attractive
the former channel and repulsive in the latter channel,
shifts the TDLSDA responses from the free-particle respo
in opposite directions. The residual interaction in the s
channel is weaker than in the density channel, where
only the exchange-correlation term but also the Coulo
direct term contributes. Consequently, the spin respons
close in energy to the free response. It is thus difficult
distinguish the collective spin mode from the single-parti
spectrum. In large dots it also causes a stronger Lan
damping in the spin than in the density channel. These fa
were observed and discussed in Ref. 13.

At B50, as a consequence of Kohn’s theorem, if the c

FIG. 4. Same as Fig. 2 using a parabolic potential withv0

52.78 meV instead of a disk confining potential.
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fining potential is harmonic with frequencyv0 the excitation
energy of the dipole density mode is equal tov0 irrespective
of the number of electrons. Otherwise, the excitation ene
depends onN; see, for example, Refs. 5 and 14. In the sp
channel Kohn’s theorem does not hold, and a size dep
dence appears in the dipole spin mode even for parab
confining potentials.14

When B is not zero, the dipole mode in either chann
splits into two branches, one with negativeB dispersion and
another with positiveB dispersion. The splitting is due to th
breaking of thel -degeneracy of the sp energies by the a
plied magnetic field. Several phenomena then appear.
first notice that forB values such that the spin of the dot
is different from zero, the spin and density modes
coupled. This is particularly apparent in theN5210 dot. In-
deed, atB51.71 and 5.14 T the system is almost param
netic, having 2Sz52 and 0, respectively~see Fig. 4 of Ref.
20!. As a consequence, the modes are uncoupled, as it ca
seen from panel~b! and especially from panel~d! of Fig. 3.
In contradistinction, atB53.43 and 7 T we have 2Sz554
and 74: the system has a large spin magnetization in th
and the spin and density modes are clearly coupled, as
played in panels~c! and ~e! of that figure. One can see
distinct peak in the spin response at the energy of the den
mode. This effect has been experimentally observed.13 The
strength of this peak increases withSz and when the system
is fully polarized, which happens slightly aboveB510 T for
the N5210 dot, all the strength is transferred from the sp
to the density channel. Conversely, the spin mode may
observed in the density channel with some intensity. T
effect is hindered because Kohn’s theorem prevents it fr
occurring for parabolic potentials, and for the disk poten
it is of order (2Sz /N)2.

The interplay between charge and spin modes is e
cially marked in the mixed channel, where the density
sponse to the spin dipole operatorDm , and the spin respons
to the density dipole operatorDr , are described. This is
shown in Fig. 5 for theN5210 dot atn53. One clearly
observes two peaks at the energy of the density modes,
another two at the energy of the spin modes. This can
understood casting the mixed response into a sum over ‘‘

FIG. 5. Mixed Smr(v) response function~effective atomic
units! of the N5210 dot atn53. The arrows indicate the densit
and spin mode peaks.
y
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dipole states’’um& and another over ‘‘charge dipole states
ur&

Smr~v!5Srm~v!5(
n

^0uDrun&^nuDmu0&d~v2vn0!

5(
r

^0uDrur&^ruDmu0&d~v2vr0!

1(
m

^0uDrum&^muDmu0&d~v2vm0!. ~16!

For a disk confining potential, the matrix element^0uDrum&
is not zero and there is a contribution toSmr from the spin
modes. For a harmonic confining potential^0uDrum& is zero,
and only the density modes would contribute toSmr through
the r-sum in Eq.~16!.

The B dispersion of the main peaks of the spectrum
reported in Figs. 6–9. In these figures the density modes

FIG. 6. B dispersion of the main peaks of theN55 spectrum.
The circles correspond to density modes, and the triangles to
modes. The solid symbols correspond ton51. The lines represen
the VPM B dispersion laws with fitted value atB50.

FIG. 7. B dispersion of the main peaks of theN525 spectrum
for a disk-confining potential. The circles correspond to dens
modes, and the triangles to spin modes. The crosses are exper
tal points from Ref. 2. The lines represent the VPMB dispersion
laws with fitted values atB50. The inset shows the negativeB
dispersion branch of the spin mode. From left to right, the so
symbols correspond ton56 – 1.
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represented by dots, and the spin modes by triangles. S
symbols correspond to integer filling factor values, and
insets show the negativeB dispersion branch of the spi
mode. As a guide, we have drawn lines starting at the va
of the B50 frequency and following the VPMB dispersion
laws @see Eqs.~24!#.

Several features of these figures are worth discuss
Concerning the spin modes, we first see that at lowB their
energy is much smaller than the energy of the density mo
in agreement with the experimental findings.13 At higher B
the dot is eventually fully polarized and the longitudinal sp
and density modes merge, as in the two-dimensional elec
gas~see Fig. 5 of Ref. 27!. This is not explicitly shown in the
figures. Second, the negativeB dispersion branch of the spi
mode manifests a clear oscillatory behavior withn, similar
to that found for the density response,37 also discussed in
Ref. 20: the ‘‘paramagnetic’’ even-n configurations have
softer spin modes than the ‘‘ferromagnetic’’ odd-n configu-
rations.

Our calculation predicts a spin instability occurring wh
the energy of the spin mode lower branch goes to zero

FIG. 9. Same as Fig. 7, using a parabolic confining poten
with v052.78 meV instead of a disk confining potential.

FIG. 8. B dispersion of the main peaks of theN5210 spectrum
for a disk confining potential. The circles correspond to dens
modes, and the triangles to spin modes. The crosses are exper
tal points from Ref. 2. The lines represent the VPMB dispersion
laws with fitted values atB50. The inset shows the negativeB
dispersion branch of the spin mode. From left to right, the so
symbols correspond ton58 – 1.
lid
e

e

g.

s,

on

a

critical B betweenn51 and 2. This instability also manifest
in the static spin polarizability Re@amm

(21)(0)#, which be-
comes negative at these largeB’s. This indicates that the gs
is no longer an energy minimum, and thus is not stable. I
worth recalling that no collective spin dipole modes are o
served in the experiments at these rather high-B values.
However, one cannot discard the idea that this might be
to the strong Landau damping existing in this energy regi
We want to recall that in thisB region, correlations not ex
plicitly taken into account by TDLSDA might be importan
and could wash out that spin instability.

Finally, we would like to comment on the density dipo
mode. For the parabolic confining potential, Figs. 6 and
show the well-known result that the density response yie
the classical law represented by the first of Eqs.~24!. For the
disk confining potential, that law is also fairly obeyed, pa
ticularly by the negativeB dispersion branch. We have sy
tematically found that the positiveB dispersion branch is
fragmented, especially for theN5210 dot. Comparing our
calculations for theN525 dot with the experimental results2

we conclude that a parabolic potential is better suited tha
disk potential to represent the physical situation. Convers
the confining potential of theN5210 dot is not parabolic,
and this is the origin of the second upper branch found in
experiment. The nonharmonicity of the confining potent
has been presented as the origin of that branch on the bas
a Hartree plus random-phase-approximation~RPA!
calculation5 in dots with N<30 ~see also Ref. 38!. Our
TDLSDA calculation supports that interpretation.

We can see that the density response of such a large
displays two satellite branches instead of one branch~com-
pare with the results for the smallN525 dot!, i.e., for
TDLSDA seems to produce a high-frequency peak tha
more fragmented than in the experiments. We remark
the upper branches disappear at intenseB, in agreement with
the experimental findings. This gives further support to o
explanation and that of Ref. 5 about the origin of the
branches. Indeed, at higher magnetic fields one expects
the harmonic cyclotron potential dominates over the ot
contributions in the KS equation.

IV. VIBRATING POTENTIAL MODEL

The intuitive idea behind the TDLSDA is that a sma
amplitude time-dependent variation of the mean field arou
the static equilibrium configuration produces an oscillation
the electronic density, which causes a small-amplitude c
lective motion of the system. This motion is self sustained
the induced density is precisely that needed to generate
oscillating potential. The vibrating potential model natura
arises when one considers the first iteration of the~perturbed
mean field! ↔ ~induced density! self-consistent scheme. I
homogenous systems, where translational invariance de
mines the shape of the induced density, this yields the e
solution. In finite systems~nuclei, metal clusters, dots!, the
model provides a useful approximation.

Using the general method described in the Appendix,
consider the following VPM Hamiltonian:
l

y
en-

d
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1

2
vxc

2 r 21S 1

2
g* mBB1

Vs

r0
m0Dsz1dV~rW,t !G

i

5(
i 51

N

@H0~rW i !1dV~rW i ,t !# ~17!

with a time-oscillating potential

dV~rW,t !52
1

NF ~vxc
2 1v0

2!K (
k

xkL x22
Vs

^r 2&
K (

k
xksz

kL xszG , ~18!
a
ta

p
th

ly

u

th

n

he

rib-

ust

ea-
rm
se-

h

se-
e
del

des

s

wherev0
25pns /R. The time dependence ofdV(rW,t) is in

the ^ • • • & spatial foldings with the densities induced by
time-dependent external field; see the Appendix. To ob
the static partH0 of the Hamiltonian@Eq. ~17!# we assume
an exact cancellation between the Hartree and external
tentials, and have taken a parabolic approximation for
exchange-correlation potential atB50. Vs is the exchange-
correlation constant introduced in the Appendix.

This VPM Hamiltonian can now be solved analytical
within the RPA by finding the operatorsO1 solution of the
equations of motion,

@H,O1#5vO1. ~19!

We have used the methods illustrated in Ref. 36 to comp
the commutators with the Hamiltonian as

@H,O#5@H0 ,O#1dV~O!, ~20!

whereH0 is the static Hamiltonian, anddV(O) the variation
arising from the induced densities. It can be shown that
solutions to Eq.~19! are given by

O6
r15

1

2
Av̄

NS Q62
i

v̄
P6D

O6
m15

1

2
A v̄s

N@12~2Sz /N!2#
F S Q6

s 2
i

v̄s

P6
s D

2
2Sz

N S Q62
i

v̄s

P6D G , ~21!

where

Q65(
i 51

N

~xi6yi !, P65(
i 51

N

~pxi6pyi!,

~22!

Q6
s 5(

i 51

N

~xi6yi !sz
i , P6

s 5(
i 51

N

~pxi6pyi!sz
i

and

v̄5Av0
21

vc
2

4
, v̄s5Avxc

2 1
2Vs

^r 2&
1

vc
2

4
. ~23!

The corresponding frequencies are
in

o-
e

te

e

v6
r 5v̄6

vc

2
,

v6
m5v̄s6

vc

2
, ~24!

and it is easy to verify that

@Lz ,O6
1#56O6

1 . ~25!

The statesuv6
r,m&[O6

r,m1u0& are orthonormal, and carry a
orbital angular momentumL061 and a spinS0 , whereL0
and S0 are the orbital and spin angular momenta of t
ground state, respectively.

The charge dipole and spin dipole strengths are dist
uted among the above states as follows:

z^0uDruv1
r & z25 z^0uDruv2

r & z25
1

4

N

v̄
,

z^0uDmuv1
r & z25 z^0uDmuv2

r & z25
Sz

2

v̄N
,

~26!
z^0uDruv1

m& z25 z^0uDruv2
m& z250,

z^0uDmuv1
m& z25 z^0uDmuv2

m& z25
1

4

N

v̄s
F12S 2Sz

N D 2G .
It is a simple matter to check that the above solutions exha
the sum rules equations~15!.

This vibrating potential model reproduces the gross f
tures of the full self-consistent calculation. Its parabolic fo
guarantees that Kohn’s theorem is fulfilled, and as a con
quence the response toDr is shared by just two peaks, whic
have the same strengthN/4v̄. Accordingly, the spin dipole
modesuv6

m& are not excited by the dipole operatorDr, and
the corresponding matrix elements vanish. Another con
quence of Kohn’s theorem is that within the VPM only th
density mode contributes to the mixed response. The mo
predicts that, in the mixed channel, the charge dipole mo
uv6

r & are excited with the same strengthSz
2/v̄N by the spin

dipole operatorDm .
In the spin channel, the spin dipole operatorDm excite

both the chargeuv6
r & and spinuv6

m& modes. These peak

have strengthsu^0uDmuv6
m&u25N@12(2Sz /N)2#/4v̄s and

u^0uDmuv6
m&u25Sz

2/v̄N, which are the same for bothDLz

561 branches. Finally, whenSz50, the density and spin
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modes are decoupled, and when the system is fully polari
i.e., 2Sz5N, all the strength is transferred to the dens
channel.

Besides this qualitative agreement, the strengths given
the first and last lines of Eq.~26! agree well with the result o
the microscopic calculation. Also the ratio (2Sz /N)2 be-
tween the strength of the density peaks excited byDm and
Dr is reproduced.

The second of Eqs.~24! can be used to determine th
energy of the spin dipole modev6

m , as the first one has bee
often used in the case of the charge dipole mode, if we fix
parameters entering that equation. We first takevxc

2

52pns /R2. This estimate is obtained by identifying the k
netic energy per particle in the exchange-correlat
harmonic-oscillator potential with that of the 2DEGpns/2,
and approximating the mean-square radius of the dot^r 2& by
R2/25r s

2N/2, wherer s
251/(pns). One then obtains

v6
m5A 4

r s
4N

S r s
2Vs1

1

2D1
vc

2

4
6

vc

2
. ~27!

The value ofr s
2Vs is related to the spin susceptibility o

the two-dimensional electron gasx0 /x5r s
2Vs11 ~Ref. 31!.

Equation ~27! yields values forv6
m which agree with the

TDLSDA ones. In particular, we have checked that theN
dependence of theB50 calculations reported in Ref. 14 i
well reproduced takingr s

2Vs.20.3 at r s.1. Note that the
N andr s dependence of energy of the spin mode is differ
from that of the density mode, which is given by

v6
r 5A 1

r s
3N1/2

1
vc

2

4
6

vc

2
, ~28!

when we take for the frequencyv0 of the confining potential
the estimatev05r s

23/2N21/4 obtained from the disk potentia
in the r /R!1 limit.

In Fig. 10 we report the energies given by Eq.~27! for a
dot of N5200 together with the experimental spin dipo
mode.13 A value of r s50.65 has been used which yield

FIG. 10. B dispersion of the spin dipole mode within the VPM
Experimental points are from Ref. 13.
d,

by

e

n

t

r s
2Vs520.24. From the figure one sees that the gross tre

of the experimentalB dispersions are reproduced by th
simple model.

The VPM works better for large dots than for small do
This is not surprising in view of the approximations leadi
to the VPM. It can be seen by comparing with the TDLSD
results in Figs. 6–9 after being advised that, for theN55
dot, the dotted line representinguv1

m& does not pass near th
main peak energies of the positiveB dispersion branch, bu
near to the satellite peak energies.

Equation~27! shows that, within the VPM, the spin insta
bility at B50 mentioned in Sec. III occurs whenr s

2Vs

11/2<0. In the 2DEG this happens31 when r s
2Vs11<0.

The difference between these conditions is due to finite-s
effects, which are crucial in determining the values ofr s at
which the instability appears in quantum dots. Whereas
the bulk the spin instability sets in atr s.37, Eq.~27! shows
that in dots it happens atr s;3. This value is well within the
range of those found in Ref. 32 for the onset of a sp
density-wave instability in small magic dots, and a factor
2 larger than the typical values obtained in that reference
open shell dots.

V. SUMMARY AND OUTLOOK

In this work we have thoroughly discussed the longitu
nal dipole response of quantum dots. We have shown tha
TDLSDA is able to reproduce the main features of the e
perimental results. In particular, we have found that the d
sity and spin modes are clearly coupled in the spin chann
the system is partially polarized, and that the frequency
the spin edge magnetoplasmon presents an oscillatory be
ior as a function ofn, being especially soft for even filling
factors.

Our numerical scheme has allowed us to study large-s
dots whose spectrum has been experimentally examine
detail, instead of relying on extrapolation of the results o
tained for small-sized dots. This is crucial to identifying th
n behavior of physical quantities like excitation frequencie

TDLSDA can be easily applied to other multipole sp
and density excitations. This is relevant in view that rec
experiments have been able to identify the spin monop
and quadrupole modes, and likely charge modes differ
from dipole.13 Work to extend the present study to oth
multipolarities, and to study the spin transverse channe
large dots along the line described in Ref. 39, is underw
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APPENDIX

In this appendix we provide a general derivation of t
VPM Hamiltonian leading to Eq.~17!. We start from the
density and magnetization variations
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@dr~rW,t !,dm~rW,t !#5a~ t !@¹xr0~rW !,¹xm0~rW !#

1b~ t !@¹xm0~rW !,¹xr0~rW !#,

~A1!

obtained from the static ground-state densityr0 and spin
magnetization m0 through the unitary transformation

ea(t)( i¹x
i

and eb(t)( i¹x
i sz

i
, respectively, in the limit of smal
ev
deformations. In Eq.~A1!, a(t) andb(t) give the amplitude
of the oscillations.

Assuming the formsVxc5Vxc(r) andWxc5mVs /r0 for
the exchange-correlation potentials, which amounts to
pandingE(r,m) aroundm50 up tom2 order and identifying
Vs with r0]2Exc(r0 ,m)/]m2um50 , one obtains the variation
in the one body potential of Eq.~1! induced by the density
variations~A1!:
tical

the
dV~rW i ,t !5a~ t !S Q~rW i !1
2Sz

N
Qs~rW i !sz

i D1b~ t !S 2Sz

N
Q~rW i !1Qs~rW i !sz

i D , ~A2!

where

Q~rW !5S ¹xV01E ¹xr0~rW !

urW2rW8u
drW8D

i

, Qs~rW !5
Vs

r0
¹xr0~rW !, ~A3!

with V05Vxc(r5r0). We have further assumed thatm05(2Sz /N) r0 in the gs. Using the results

K (
i

Q~rW i !L [E Q~rW !dr~rW,t !drW52S a~ t !1
2Sz

N
b~ t ! D E r0~rW !¹xQ~rW !drW,

~A4!

K (
i

Qs~rW i !sz
i L [E Qs~rW !dm~rW,t !drW52S 2Sz

N
a~ t !1b~ t ! D E r0~rW !¹xQs~rW !drW

it is then possible to write the variations in the one-body potential of Eq.~1! in the separable form

dV~rW i ,t !5
21

12~2Sz /N!2
F S K (

i
Q~rW i !L

*@¹xQ~rW !#r0~rW !drW
2

2Sz

N

K (
i

Qs~rW i !sz
i L

*@¹xQs~rW !#r0~rW !drW
D

3S Q~rW i !1
2Sz

N
Qs~rW i !sz

i D1S K (
i

Qs~rW i !sz
i L

*@¹xQs~rW !#r0~rW !drW
2

2Sz

N

K (
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Q~rW i !L
*@¹xQ~rW !#r0~rW !drW

D
3S 2Sz

N
Q~rW i !1Qs~rW i !sz

i D G . ~A5!

Following Ref. 30, one could now express the various responses to an oscillating potential of form~A5! in terms of the
independent particle response functionsxs,s8

0 through RPA-type equations. However, our aim here is to develop an analy
model which allows us to understand in the numerical results of Sec. III a simple way. To this end, in Eqs.~A3! we take a
harmonic oscillator for the one-particle potentialV05 1

2 vxc
2 r 2 to simulate the short-range effects, and a step function for

electronic densityr0 entering the long-range contribution*¹xr0(rW)/urW2rW8udrW8. We also assumeQs(rW i).22Vsxi /^r 2&.
Equation~17! of Sec. IV is then obtained.
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