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The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using
local-spin-density-functional theory. We have studied the coupling between the collective spin and density
modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle
excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin
operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which
is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-
values. Results for selected numbers of electrons and confining potentials are discussed.
[S0163-182609)02223-1

[. INTRODUCTION ing at a quantitative simultaneous description of spin- and
charge-density collective modes in quantum dots should re-
The far-infrared FIR) response of quantum dots is a sub- produce.

ject of current interest since the experiments carried out by The dipole spin response function for unpolarized quan-
Sikorski and Merkt and by Demekt al? These experiments tum dots at zero magnetic field was recently addressed by
and subsequent theoretical wofkee Refs. 3—8 and refer- two of us!* In the FIR regime, it has been found that the
ences thereinshowed that the excitation spectrum of quan-response is dominated by a low-energy collective dipole spin
tum dots in the FIR region is dominated by the dipole edgemode excited by the operat@r,==_,x;o),, wherex; and
magnetoplasmon peak that splits into two differBrdisper- ' are Cartesian components of the position and spin vec-
sion branches when a magnetic fi@ds applied perpendicu- tors, andN is the number of electrons in the dot. Similar
larly to the dot. These peaks are dendithharge collective  modes have been described in atomic nu€eind in alkali-
modes excited by the operat@rp=EiN= 1Xi. In the case of metal clusterg®?’
harmonic confinement by the potenti}amwgrz, as a conse- The aim of the present work is to extend our previous
quence of Kohn'’s theorehthe density mode is not coupled study to the case of a quantum dot submitted to a perpen-
to any other mode, and the dipole operaly excites only  dicular static magnetic field, which originate8adependent
two collective states at the energi&si=w/w§+ %wi spin polarization in the ground state of the dot. We will

+ % wg, Wherewc is the Cyc|0tron frequency_ If the Conﬁning eXpIICItly show that this not Only causes the Spllttlng of the
potential is not harmonic, Kohn's theorem does not hold. Orpin dipole mode into two branches, one with negattze
the one hand, the energy of the modes depends on the nur@ispersion and another with a positiBedispersion, but also
ber of electrons in the dot, and, on the other hand, a richeits coupling with the dipole density mode mainly excited by
excitation spectrum appears. the operatoD ,. We shall see that if the confinement is not
Raman spectroscopy has made it possible to observe iarmonic and the dot is polarized, that operator also excites
the same sample single-particlsp), charge, and spin- the dipole spin mode. Conversely, when the dot is polarized,
density excitationd®'* whose evolution as a function &  which is the case if it has an odd number of electrons, or for
has been studied in recent experiments. This has reveal@dost cases wheB acts on the dot, the spin response is
several interesting features of the @pef. 12 and of spin  coupled to the density response so that the external operator
collective excitation® in quantum dots. Limiting ourselves D= =;x;o, also excites the density mode. When the system
to the latter, the experiments have determined that the spiis fully polarized both modes coincide, while at zero polar-
mode lies very close in energy to the uncorrelated singleization they are uncoupled.
electron excitations, and that magnetoplasmons can also be To this end, we have self-consistently evaluated the lon-
detected using spin-dependent probes. In addition, it hagitudinal response of the dot in the time-dependent local-
been experimentally determined that the spin mode has spin-density approximatioifDLSDA). By longitudinal we
much lower energy than the charge mode. These facts comrean an external field which is either spin independent, or
stitute the body of experimental results that any theory aimdependent on the spin component parallel to the magnetic
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field, i.e., thez component. We present results obtained for Like Kallin and Halperid’ and MacDonald® who thor-
selected numbers of electrons and confining potentials. Sp@ughly studied the spin and density response of the two-
cifically, we have used a harmonic oscillator potential to de-dimensional electron ga2DEG), we mainly addressed the
scribe dots witiN=5 and 25, and a disk-confining potential longitudinal response of quantum-dot configurations corre-
to describe dots with 25 and 210 electrons, for which the FIRsponding to integer filling factors. In a few cases we have
response has been determined in détae results obtained considered configurations which are the finite-size analog of
for the N=5 dot have been presented as preliminary resultpartially filled 2DEG configurations. In these cases, the use
in Ref. 18. The ground stat@s) structure of the later two of the TDLSDA may be questioned, since these configura-
dots in intense magnetic fields has been recentltions are believed to have very complicated, strongly corre-
addressed®?® However, to our knowledge, no self- lated ground states. Hence one has to regard the correspond-
consistent TDLSDA calculation for a dot as large s ing results as qualitative extensions of the ones obtained at
=210 has been carried out before even in the density channteger filling factors. Although qualitative, these results may
nel. yield the general trends of the excitation spectrum, and for

To obtain correct collective modes one needs to have this reason here we have considered some cases of this kind.
proper description of the ground state these excitations are To help understand the microscopic spectra, simpler
built on. Several density-functional calculations have ad-methods have been developed to reproduce their gross fea-
dressed this questidh2° The LSDA we use in the present tures. One such method is the sum rule approach used to
work is based on the exchange-correlation energy functionalescribe multipole density modes in quantum ddtslere
employed in Ref. 21 as an input to construct their currentve present an analytical model, called vibrating potential
density-functional theoryCDFT). Within the range of mag- model(VPM), which provides a complementary physical in-
netic fields we are interested in, we have checked that botkight into the longitudinal response of quantum dots. The
the LSDA and CDFT yield similar results for gs properties VPM model has been widely used in nuclear physics,
other than the current density. Tests of the CDFT againswhere it was developed to describe nuclear collective modes.
exact and Hartree-FockHF) calculations have been pre- It has also been applied to the description of simple metal
sented in Ref. 21. Tests of unrestricted HF against exact ggusters®®
energies in the filling factor region=2v=1 were also pre-
sented in Ref. 26 for a small number of electrgop to 5.

We conclude, from the comparisons presented in the
above references, that the TDLSA may vyield fairly accurate We consider a quantum dot made Mfelectrons moving
results for the density and spin response in the range of magp the z=0 plane, where they are confined by the circular
netic fields for which experimental information is currently potentialV*(r) in the presence of a constant magnetic field
available. Comparison with these experiments constitute thB in the z direction. In the LSDA, the single electron wave
ultimate test of this essentially parameter-free approximafunctions are given by the solution of the Kohn-Sh&ts)
tion. equations

II. LONGITUDINAL RESPONSE

1.1 1
— 5V sod,+ §w§r2+v+(r)+VH+VX°+

1
W+ Eg*/LBB)UZ Pall,0)=€,04(T,0), @

whereVH=[dr’p(r")/|r—r'| is the Hartree potentiav*® (1), w.=eB/(mc) is the cyclotron frequency and:g
=0 c(p,m)/dplys and W*°=a&,(p,m)/om|ys are the =efi/(2m.C) is the Bohr magneton. The use of the same
variations of the exchange-correlation energy densityjetter for the effective mass and the spin magnetization, and
E.(p,m) in the local approximation taken at the ground for the dielectric constant and the single-electron energies
state, angh(r) andm(r) are the electron and spin magneti- should cause no confusion, since neither the mass nor the
zation densities. The exchange-correlation energy deéisity dielectric constant will explicitly appear in the rest of the
has been constructed from the results on the nonpolarize§fork.
and fully polarized 2DEGQRef. 3] in the same way as in ~ AS a consequence of circular symmetry, thg's are
Ref. 32, i.e., using the two-dimensional von Barth andeigenstates of the orbital angular momentum i.e.,
Hedin®® prescription to interpolate between both regimes. e (r,0)=u,(r)e "’ with 1=0,+1,+2,... . The gs
We have used effective atomic units €e*e=m=1), electron density is given by(r)=2 ,n,|u,(r)|?, while the
wheree is the dielectric constant of the semiconductor, andgs spin magnetization density is expressed in terms of the
mis the electron effective mass. In units of the bare electrompin of orbitale, (o), , asm(r) == N 0,)|u.(r)|% The
massm, one hasm=m*m,. In this system of units, the numerical calculations reported in the following have been
length unit is the effective Bohr radig =ase/m*, and the  performed at a small but finite temperatdre 0.1 K, and the
energy unit is the effective Hartré¢* =Hm*/e2. For GaAs  KS equations have been solved by integration$pace. The
we have takere=12.4,m* =0.067, andy* = —0.44, which  thermal occupation probabilities, are determined by the
yieldsa} =97.9A andH* ~11.9 meV~95.6 cmi L. In Eq.  normalization condition
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1
N=§ N,=> (2 DPEC

a 1+exq(ea_lu)/kBT] ,

2
and Dp=| _ |. 4

which fixes the chemical potential. Our iterative method

works for weak and strong magnetic fields as well, for which The TDLSDA assumes that electrons respond as free par-
the effective potential is very different. It has proved to beticles to the perturbing effective field, which consists of the
very robust, allowing us to handle without any problem sev-external plus the induced field arising from the changes pro-
eral hundreds of electrons. duced by the perturbation in the gs mean field. This condi-
Once the gs has been obtained, we determine the inducef@n defines the TDLSDA correlation functiop,, in terms

densities originated by an external field employing linear-gf tne free-particle spin-density correlation functiqﬁo),
response theory. Following Refs. 34 and 35, we can write th?nrough a Dyson-type integral equation 7

variation dp induced in the spin density, (o0=1,]) by an
external spin-dependent fielel whose nontemporal depen-

dence we denote &="= ,f (r)|o){(o]: Yoo (ToT" @)

50sF,0) =3, [ i e P70 7Y, @
=xO(r e+ 2 | didix () ()

where x,, is the spin-density correlation function. In this 7192

limit, the frequencyw corresponds to the harmonic time de- > = > >

pendence of the external fiell and of the inducedsp,, . XKooy (F1:12) Xy (12,175 @) ®

Equation(3) is a 2X 2 matrix equation in the two-component

Pauli space. In longitudinal response thedtys diagonal in  The free-particle spin-correlation function at finite tempera-

this space, and we write its diagonal components as a vectaiire is obtained from the KS sp wave functions, energies,

FE(II).For the operators defined in Sec. I, we then have and occupation probabilities:

n,—n
(0) ->—>’ __ , x> -, o ﬁ * —>, =,
Ko (11 @)= = 800 24 @3 (D0p(1) =0 "o (7 ) @all). (®)

The labela (B) refers to a sp level with spiar (') and occupation probability, (ng). To simplify the analysis of the
results, we have added a small but finite imaginary geid the energyw. This will make an average of the strength function
by transforming the5 peaks into Lorentzians of widthz2

The kerneIK,,,,/(F,F’) is the residual two-body interaction

I 1 ?Ee(p,m) I
KUO”(rler): N —t 5(r1_r2)! (7)
|rl_r2| Py Py gs
where
*Exc P*Exc *Exc PExe
= 2 ’ +(770'+ 7’0")& Im +7]u'770"—2 EK(r)+(7]U+ nu’)L(r)+7]UﬂU’|(r)i (8)
0Py 0Py gs ap gs P gs om

gs

with ;=1 and» = —1. The last expression is the definition correlation functiony®= !9+ x{9=2)!9 is the same in

of theK, L, and! functions. both channels becaugé} = x{9. This constitutes the para-
When the system is not polarized, there are only two inmagnetic limit of the longitudinal response with uncoupled

dependent correlation functions. These afg and xmm,  density and spin channet$jn which the residual interaction

describing, respectively, the density respons®joand the  consists of a Coulomb direct plus an exchange-correlation

spin response t®,. They are given by terms in one case, and only of an exchange-correlation term
in the other.
Xop=Xt1 P X1 T X1t X0 When the system is polarized one no longer hé%’
9 =x1?, and there are two more independent correlation func-
Xmm= X1t X =X~ X 1o tions
and the four equation$) reduce to two uncoupled equations Xpm=X11— X1~ X1t X1
for x,, and xmm Wwhose kernels are given by rij (10)

+Ké(ri») and14(ryy), respectively, and the free-particle Xmp=X11— X1 T X110~ X1
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. ) i ) ) FIG. 2. Same as Fig. 1 fad=25.
FIG. 1. Dipole strength functiofeffective atomic unitsof the

N=5 dot as a function of frequendyneV). Solid and dotted lines
correspond to the density responseDtp and to the spin response
to D,,, respectively. Dashed lines represent the free-particl

The response functions corresponding to the above dipole
dields have been obtained from the =1 components of the

strength function. correlation functions$g(r,r’;w) with A,B=p,m as
which produce the dgnsny responseDgq, and the spin re- _ o[ e dra r2r2 D _
sponse td,,, respectively. app(w)=7" | dridrarirs(xag (r1,r2;0)
Equations(5) have been solved as a generalized matrix )
equation in coordinate space after performing an angular de- +X§( (r1,rp;0))
composition ofy,,» andK ., of the kind
POSEER Pt SR = af (o) + afg (). 13
K gl :Z K(l) "\ ail (0—6") 11 . . .
oo (1,17) : sor(rir')e . (1) Their imaginary parts are related to the strength functions as

Sag(w) = (1/7)Im[ apg(w)]. Although the excitation energy
Only modes with = =1 couple to the external dipole fields « and strength functions are always positive, it may be easily
D, andD,,. This can be readily seen performing the angularverified that the following relations formally hold:
integral in Eq.(3). In practice, we have considered the mul-

tipole expansion of the external field, using the dipole vec- R b5 (w)]=Rg all(— )],
tors (14
11 Ml a§ (@)1=~ Im[afh(— )1
D(_l):_reiI0 1

To check the numerical accuracy of the calculations we
and (120  have used thésum rules for the dipole operators, which can
be expressed in terms of gs quantiti@s:

1 (1
(x1)_— *if
D 2re (_1).

For a polarized system having a nonzero magnetization in
the gs, thd = £1 modes are not degenerate, and give rise to
two excitation branches witAL,=+1, whereL, is the gs
orbital angular momentum.

(pp)_f = ! = N
my™ = Spp(w)wdw_§<O|[Dp:[H!Dp]]|O>_E:

m(mm):fsmm( Ywd —£<0|[D [H.,D ]]|0>_E
{ w)odo=3 m: LM Ym T
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FIG. 3. Same as Fig. 1 fod=210. FIG. 4. Same as Fig. 2 using a parabolic potential wiih
=2.78 meV instead of a disk confining potential.
m(lmp)Zm(lpm)Zf Smp(w) dw+f Sym(w)w do this section. Consequently, we have also studied it using a
harmonic confining potential witlwy=2.78 meV to repro-
=(0|[Dy.[H,D,1]|0)=25,, (15  duce the experimental dipole energyBat 0. In this case the
. ) system is in the MDD state for 4.46¥B<4.69 T. We have
whereS, is the total spin of the ground state. takenB,;=4.58 T and have defined the otherconfigura-
tions as indicated before.
. RESULTS The existence of a MDD state for this dot is in agreement

with the findings of Ref. 24. It is also worth remarking that

Figures 1-3 display the dipole strength function of theeven for such a small dot; as defined above also coincides
N=5, 25, and 210 dots for selectdd values. Solid lines with the number of occupiedn(]or |) bands for values up
correspond to the density responsétp, and dotted lines to  to y=5-6, which correspond to rather lo®intensities. In
the spin response 0, that is toS,, and t0S,,,. Dashed  Fig. 4 we present the strength function corresponding to
lines represent the free-particle strength function. For the=25 with parabolic confinement.
five-electron dot we have used a parabolic confining poten- Figures 1-4 show that in both channels the response at
tial V*(r)=3mwjr?, with wy=4.28 meV, and for the B=0 is concentrated within a small energy range, with one
other dots we have used a disk confining poteritiaf. single peak or with several closely lying fragmented peaks

For N=25 and 210, mosB values displayed correspond which exhaust most of thésum rule. The peak energy is
to integer filling factorsv. It was found® that for N=210  lower in the spin than in the density channel. This is due to
and anR disk confining potential, these values follow the law the character of the residual interaction, which is attractive in
v=2mcng/(eB) pertaining to the 2DEG, wherens the former channel and repulsive in the latter channel, and
=N/(wR?) is the electron surface density. For tNe=25  shifts the TDLSDA responses from the free-particle response
dot, that law yieldsB=3.29 T as the value at which the in opposite directions. The residual interaction in the spin
system becomes fully polarized. Actually, we have foundchannel is weaker than in the density channel, where not
that the dot is in the maximum density dr@dDD) state for  only the exchange-correlation term but also the Coulomb
3.42 T=<B=<3.70 T. As thev=1 configuration we have direct term contributes. Consequently, the spin response is
taken that corresponding B, =3.56 T, and have defined the close in energy to the free response. It is thus difficult to
other v configurations as those corresponding to the valualistinguish the collective spin mode from the single-particle
B,=B;/v. spectrum. In large dots it also causes a stronger Landau

The results of Ref. 2 for th&l=25 dot seem to indicate damping in the spin than in the density channel. These facts
that a confining potential of parabolic type might be morewere observed and discussed in Ref. 13.
adequatésee the discussion of the charge mode at the end of At B=0, as a consequence of Kohn'’s theorem, if the con-



PRB 59 SPIN AND DENSITY LONGITUDINAL RESPONSE 6. .. 15 295

15000 T T T T 100
N=210
, B=3.43T 80 | N=35
o_
{ v=3

10000 parabolic potential

60 I
P . ® 40
5000 | N =
; 20 0 ]
l ~~~~~~
m I
o B e
J L ‘l' 0 | | v | v |
0 . . . A 0 1 2 ? ) 5
0 2 4 6 8 10 -
w(meV)

FIG. 6. B dispersion of the main peaks of tihe=5 spectrum.
FIG. 5. Mixed S,,(w) response functioneffective atomic  The circles correspond to density modes, and the triangles to spin
units) of the N=210 dot atv=3. The arrows indicate the density modes. The solid symbols correspondite 1. The lines represent
and spin mode peaks. the VPM B dispersion laws with fitted value &=0.

fining potential is harmonic with frequenay, the excitation ~ dipole states”|m) and another over “charge dipole states”
energy of the dipole density mode is equakdgirrespective 1P
of the number of electrons. Otherwise, the excitation energy
depends oN; see, for example, Refs. 5 and 14. In the spin _ _ _
chgnnel Kohn's theorem doF:as not hold, and a size degen- (@) =Syl @) ; (01D I {n|Dir|0) o= o)
dence appears in the dipole spin mode even for parabolic
confining potential$? = (0[D,|p){p|D | 0) (0~ @,0)
When B is not zero, the dipole mode in either channel P
splits into two branches, one with negatiBelispersion and
another with positivd dispersion. The splitting is due to the + 2, (0|D,|m){m|D | 0) 8(w— wimp)- (16)
breaking of thel-degeneracy of the sp energies by the ap- m

plied magnetic field. Several phenomena then appear. W . - . .
first notice that forB values such that the spin of the dot gs _Eor a disk confining p(_)tentlal, the ”.‘a”'x eleméﬁtDp|m}
s not zero and there is a contribution $g,, from the spin

is different from zero, the spin and density modes ard . - .
coupled. This is particularly apparent in thNe=210 dot. In- modes. For a ham.‘O”'C confining potenﬁ_ale|m> IS zero,
deed, aB=1.71 and 5.14 T the system is almost paramag-and only the density modes would contributeSg, through
netic, having 3,=2 and 0, respectivelysee Fig. 4 of Ref. the p-sum In Eq.(_16). . .
20). As a consequence, the modes are uncoupled, as it can beThe B _dlspersmn of the main peaks of the spectrum s
seen from panelb) and especially from panét) of Fig. 3. reported in Figs. 6—9. In these figures the density modes are

In contradistinction, aB=3.43 am 7 T we have %5,=54 20

and 74: the system has a large spin magnetization in the gs le
and the spin and density modes are clearly coupled, as dis- P

played in paneldc) and (e) of that figure. One can see a 1or .

distinct peak in the spin response at the energy of the density AN
mode. This effect has been experimentally obsefvebhe o v

strength of this peak increases wih and when the system T 1
is fully polarized, which happens slightly aboBe=10 T for <
the N=210 dot, all the strength is transferred from the spin

to the density channel. Conversely, the spin mode may be
observed in the density channel with some intensity. This
effect is hindered because Kohn's theorem prevents it from

N=25

disk potential

occurring for parabolic potentials, and for the disk potential .:::‘,’:f_;_l ) ‘
it is of order (5,/N)2. % 2 s 6
The interplay between charge and spin modes is espe- BM

cially marked in_the_ mixed channel, where th_e density re- fc 7.8 dispersion of the main peaks of the=25 spectrum
sponse to the spin dipole operamy,, and the spin response o 5 disk-confining potential. The circles correspond to density
to the density dipole operatdd,, are described. This is modes, and the triangles to spin modes. The crosses are experimen-
shown in Fig. 5 for theN=210 dot atv=3. One clearly tal points from Ref. 2. The lines represent the V@Miispersion
observes two peaks at the energy of the density modes, anglvs with fitted values aB=0. The inset shows the negatiBe
another two at the energy of the spin modes. This can beispersion branch of the spin mode. From left to right, the solid
understood casting the mixed response into a sum over “spigymbols correspond te=6-1.
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critical B betweerw=1 and 2. This instability also manifests
in the static spin polarizability F{af{n})(O)], which be-
comes negative at these larBés. This indicates that the gs
is no longer an energy minimum, and thus is not stable. It is
worth recalling that no collective spin dipole modes are ob-
served in the experiments at these rather Bghalues.
However, one cannot discard the idea that this might be due
to the strong Landau damping existing in this energy region.
We want to recall that in thi8 region, correlations not ex-
plicitly taken into account by TDLSDA might be important
and could wash out that spin instability.
0 e v xp e - - Finally, we would like to comment on the density dipole
0 2 4 B?T) 8 10 12 mode. For the parabolic confining potential, Figs. 6 and 9
show the well-known result that the density response yields
FIG. 8. B dispersion of the main peaks of the=210 spectrum the classical law represented by the first of Eg4). For the
for a disk confining potential. The circles correspond to densitydisk confining potential, that law is also fairly obeyed, par-
modes, and the triangles to spin modes. The crosses are experimédicularly by the negativeB dispersion branch. We have sys-
tal points from Ref. 2. The lines represent the VB\tispersion  tematically found that the positiv8 dispersion branch is
laws with fitted values aB=0. The inset shows the negati& fragmented, especially for thd=210 dot. Comparing our
dispersion branch of the spin mode. From left to right, the solidcalculations for theN = 25 dot with the experimental resuﬁsy
symbols correspond to=8-1. we conclude that a parabolic potential is better suited than a
disk potential to represent the physical situation. Conversely,
F&‘e confining potential of th&l=210 dot is not parabolic,

represented by dots, and the spin modes by triangles. Sol . S .
symbols correspond to integer filling factor values, and theand this is the origin of the second upper branch found in the

insets show the negativd dispersion branch of the spin experiment. The nonharmonicity of the confining potential

mode. As a guide, we have drawn lines starting at the valugas been presented as the origin of that branch on the basis of

_ . ; . a Hartree plus random-phase-approximatio(RPA)
gvxt/r;?sie ()E;rse(gli)e]ncy and following the VPB dispersion calculatior? in dots with N<30 (see also Ref. 38 Our

Several features of these figures are worth discussing-jljD\I/‘VSeDCAar?ZIggl?ﬁgPtﬁgp(;):rcgsitth?etsln;irgere;?t;r;'h a large dot
Concerning the spin modes, we first see that at Btheir y resp 9

. : isplays two satellite branches instead of one brajeom-
energy is much smaller than the energy of the density modeg, - = .
in agreement with the experimental findingsAt higher B _ﬁ)_gfs\'[\)’zh the re.:,ults fgr the im?]""f— 25 do, "e"k ftc: ti
the dot is eventually fully polarized and the longitudinal spin Seems 1o produce a high-irequency peak that 1S

and density modes merge, as in the two-dimensional electrotrf'?hOre fragrl?enter?l thgn in the eﬁpigems' We rer?ar_I:hthat
gas(see Fig. 5 of Ref. 27 This is not explicitly shown in the thg Léppg:_mr:rr]l; | ef_sn d!rs]agpfl"_?]r.sa I'nes ?E:tﬁg:esmegrtvzlo our
figures. Second, the negatiedispersion branch of the spin Xperi INdings. 1his gives Tu upp u

mode manifests a clear oscillatory behavior withsimilar explanation and that 9f Ref. 5 abc_)ut_the origin of these
to that found for the density resporealso discussed in branches. Indeed, at higher magnetic fields one expects that

Ref. 20: the “paramagnetic’ even- configurations have the harmonic cyclotron potential dominates over the other

softer spin modes than the “ferromagnetic” oadeonfigu- contributions in the KS equation.
rations.

Our calculation predicts a spin instability occurring when
the energy of the spin mode lower branch goes to zero at a

o {em™)

120 Te IV. VIBRATING POTENTIAL MODEL
R
100 | N ] The intuitive idea behind the TDLSDA is that a small
A% amplitude time-dependent variation of the mean field around
80 | \\ " the static equilibrium configuration produces an oscillation in

the electronic density, which causes a small-amplitude col-
lective motion of the system. This motion is self sustained if
N =25 the induced density is precisely that needed to generate the
] oscillating potential. The vibrating potential model naturally
parabolic potential arises when one considers the first iteration of (ferturbed
mean field « (induced density self-consistent scheme. In
homogenous systems, where translational invariance deter-
2 T . ‘ mines the shape of the induced density, this yields the exact
0 2 B 4 6 solution. In finite systemsnuclei, metal clusters, dotsthe
model provides a useful approximation.

FIG. 9. Same as Fig. 7, using a parabolic confining potential Using the general method described in the Appendix, we

with wy=2.78 meV instead of a disk confining potential. consider the following VPM Hamiltonian:

60

®{em™)

40
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z

N V2
1 1 1
22 +2w|+8wr2+§w)2(cr2+

o+ 5V(F,t)]=21 [Ho(r)+oV(ri,n] (17

1 *, B vV,
=g *ugB+—m
2 B Po 0

with a time-oscillating potential

SV(r,t)y=—— (wxc+wo)<2 xk>x 2<V ><E Xka'Z>X(TZ , (18)
|
where w§=wnS/R. The time dependence oi\/(F,t) is in b, Wc
the (- - - ) spatial foldings with the densities induced by a wL=0ES
time-dependent external field; see the Appendix. To obtain
the static parH, of the Hamiltonian[Eqg. (17)] we assume o
an exact cancellation between the Hartree and external po- w@zwgtf, (24
tentials, and have taken a parabolic approximation for the
exchange-correlation potential Bt=0. V, is the exchange- ganq it is easy to verify that
correlation constant introduced in the Appendix.
This VPM Hamiltonian can now be solved analytically [L,,0f]==0%. (25)
within the RPA by finding the operato@* solution of the - -
equations of motion, The stategw”™=0%""|0) are orthonormal, and carry an
orbital angular momenturhy*+1 and a spinS,, wherel,
[H,0"]=wO". (19 and S, are the orbital and spin angular momenta of the

) ) ground state, respectively.
We have used the methods illustrated in Ref. 36 to Compute The Charge d|po|e and Spin d|p0|e Strengths are distrib-

the commutators with the Hamiltonian as uted among the above states as follows:

[H,0]=[H,,0]+V(0), (20) 1N
KOID,| % )P=KOID | w? )= 7 =,
whereH, is the static Hamiltonian, anéV(O) the variation

arising from the induced densities. It can be shown that the

2
solutions to Eq(19) are given b S;
4(19) are given by KOID |’ ) P=KOID )P ==,
o2 .- . - (26)
0L =3 \§| Q:~ =P- KOID, o™ P=K0|D ™ =0,
— 1N 2S,\?
my|2_ LLLAN) S I [P
ot [or b (OlD o) P=KolRplo™ PG 2| 1-( T3
- N[1-(2S,/N)%] @y
_ Itis a simple matter to check that the above solutions exhaust
2S5, 9 I—P (21) the sum rules equation(45).
N * , = This vibrating potential model reproduces the gross fea-

tures of the full self-consistent calculation. Its parabolic form
where guarantees that Kohn'’s theorem is fulfilled, and as a conse-
quence the responsel, is shared by just two peaks, which
N have the same strengiW4w. Accordingly, the spin dipole
Q=2 (Xi*y), P.=2 (Pi*py, modes| ™) are not excited by the dipole operar, and
22) the corresponding matrix elements vanish. Another conse-
N guence of Kohn's theorem is that within the VPM only the
":E o PU:E I dens_ity mode_contribu_tes to the mixed response. The model
Q% =4 (Xi*yi)os, L (Pxi*Pyi) o predicts that, in the mixed channel, the charge dipole modes
|w".) are excited with the same strendB N by the spin
and dipole operatoD,,
In the spin channel, the spin dipole opera®y, excite
w? both the chargéw”.) and spin|o) modes. These peaks

C
=NV @wot 7 05= \ Ot 7ot 23 have strengths (0| D | 0 ™)|?=N[1—(2S,/N)?]/4w, and
(ro
|{0|D | @™)|?=S% wN, which are the same for bothL,
The corresponding frequencies are ==+1 branches. Finally, whef,=0, the density and spin
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35 riv(,z —0.24. From the figure one sees that the gross trends
o of the experimentaB dispersions are reproduced by the
sor . simple model.
sl T The VPM works better for large dots than for small dots.
________ R ° This is not surprising in view of the approximations leading
s 20| . a0 to the VPM. It can be seen by comparing with the TDLSDA
N A .- results in Figs. 6-9 after being advised that, for e 5
ERE: . L . dot, the dotted line representing?’) does not pass near the
~~~~~~~~ S e, main peak energies of the positiBedispersion branch, but
107 P near to the satellite peak energies.
N = 200 ) Equation(27) shows that, within the VPM, the spin insta-
08 bility at B=0 mentioned in Sec. Ill occurs whergV,,
00 . . +1/2<0. In the 2DEG this happetiswhen r2Vv, +1<0.

700 05 1.0 1.5

BT The difference between these conditions is due to finite-size

effects, which are crucial in determining the values gfit

FIG. 10. B dispersion of the spin dipole mode within the VPM. which the instability appears in quantum dots. Whereas in
Experimental points are from Ref. 13. the bulk the spin instability sets in a§=37, Eq.(27) shows

that in dots it happens at~ 3. This value is well within the

modes are decoupled, and when the system is fully polarizediange of those found in Ref. 32 for the onset of a spin-
i.e., 25,=N, all the strength is transferred to the density density-wave instability in small magic dots, and a factor of
channel. 2 larger than the typical values obtained in that reference for

Besides this qualitative agreement, the strengths given bgpen shell dots.
the first and last lines of E@26) agree well with the result of
the microscopic calculation. Also the ratio $2N)? be-
tween the strength of the density peaks excitedDy and
D, is reproduced.

The second of Eqs(24) can be used to determine the
energy of the spin dipole mode', as the first one has been

V. SUMMARY AND OUTLOOK

In this work we have thoroughly discussed the longitudi-
nal dipole response of quantum dots. We have shown that the
: X . -~ TDLSDA is able to reproduce the main features of the ex-
often used in the case of the charge dipole mode, if we fix they imental results. In particular, we have found that the den-
parameterzs entering that equation. We first toké, _ sity and spin modes are clearly coupled in the spin channel if
=2mns/R". This estimate is obtained by identifying the ki- the system is partially polarized, and that the frequency of

netic energy per particle in the exchange-correlationne spin edge magnetoplasmon presents an oscillatory behav-
harmonic-oscillator potential with that of the 2DEfny/2,  ior a5 a function ofy, being especially soft for even filling

and approximating the mean-square radius of thgdfotby  4ctors.
R?/2=rN/2, wherer=1/(mn;). One then obtains Our numerical scheme has allowed us to study large-sized
dots whose spectrum has been experimentally examined in

2 1\ o2 detail, instead of relying on extrapolation of the results ob-
o™= \/—<f§Va+ S _Ci&_ (27)  tained for small-sized dots. This is crucial to identifying the
- r‘S‘ 2 42 v behavior of physical quantities like excitation frequencies.

TDLSDA can be easily applied to other multipole spin
and density excitations. This is relevant in view that recent
experiments have been able to identify the spin monopole
) X 0 : ) and quadrupole modes, and likely charge modes different
Equation (27) yields values forw. which agree with the  qm dinolel® Work to extend the present study to other
TDLSDA ones. In particular, we have checked that the ytipolarities, and to study the spin transverse channel in

dependence of thB=0 calculations reported in Ref. 14 is |arge dots along the line described in Ref. 39, is underway.
well reproduced takingsV,=—0.3 atrg=1. Note that the

N andr ¢ dependence of energy of the spin mode is different
from that of the density mode, which is given by

The value ofrﬁv,, is related to the spin susceptibility of
the two-dimensional electron gag/x=r2V,+1 (Ref. 3.
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! +w—§+& (28)
rgNllz 4~ 2"

when we take for the frequeneay, of the confining potential
the estimates,=r; N~ obtained from the disk potential
in ther/R<1 limit.

In Fig. 10 we report the energies given by Eg7) for a In this appendix we provide a general derivation of the
dot of N=200 together with the experimental spin dipole VPM Hamiltonian leading to Eq(17). We start from the
mode™® A value of r¢=0.65 has been used which yields density and magnetization variations

APPENDIX
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[5p(F,t),5m(F,t)]=a(t)[pro(F),meo(F)] deformations. In Eq(AL), a(t) andB(t) give the amplitude
of the oscillations.
+ B[ V,mo(1), Vyepo(N], Assuming the form&/*°=V*%(p) andW*°=mV, /p, for

(A1) the exchange-correlation potentials, which amounts to ex-

panding&(p,m) aroundm=0 up tom? order and identifying
obtained from the static ground-state dengity and spin v with pd2&,.(po,m)/dm?|,,—o, One obtains the variation
magnetization my through the unitary transformations in the one body potential of Eql) induced by the density
e* M=% and eAOZx, respectively, in the limit of small variations(AL):

N .25, . 2S, . .
5V(ri,t)=a(t)(Q(ri)+WQU(ri)0'z +B(t)<WQ(ri)+Qa(ri)0—lz ; (A2)
where
. Voo(r) - .V, .
Q(r)= vxvo+f f"f,”dr' + Q)= =2V, po(D), (A3)
[r—r’| , Po

with Vo=V*(p=pg). We have further assumed that=(2S,/N) p, in the gs. Using the results

> Q(r) )= | Q(r)ép(rtydr=— a(t>+§ﬁ<t> po(NV,Q(N)dr,
7 N

(A4)
. - - 2 - .o
<Z Q,,(ri)o'z>5f Q,,(r)ém(r,t)dr=—(Wsza(t)w(t))fpo(r)Van(r)dr
it is then possible to write the variations in the one-body potential of(Egin the separable form
) ~ <2i Q(Fi>> ~ <Ei Qg(Fi>aL>
ov(r,t)= 5 = TN = -
1-(28,/N)?[ \ [V, Q(N]po(NdF N [[V,Q,(F)]po(F)dF
<[ Qe+ 22, i)+ <E Qa(ri)az> 25, <E Q(ri)>
i)+ — Qolli)o; > - N > N
N JTVxQo(Mpo(Ndf N [[V,Q(F)]po(F)dF
2 - .
X %Q(rowa(ri)a;) : (AS)

Following Ref. 30, one could now express the various responses to an oscillating potential gAfrmm terms of the
independent particle response functiqrgsg, through RPA-type equations. However, our aim here is to develop an analytical
model which allows us to understand in the numerical results of Sec. Il a simple way. To this end, (AEqae take a
harmonic oscillator for the one-particle potentig)= 3 wﬁcr2 to simulate the short-range effects, and a step function for the

electronic densityp, entering the long-range contributiofV,po(r)/|r —r'|dr’. We also assum@,(r;)=—2V,x;/{r?).
Equation(17) of Sec. IV is then obtained.
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