23 research outputs found

    Recent insights into the complexity of Tank-binding kinase 1 signaling networks: The emerging role of cellular localization in the activation and substrate specificity of TBK1

    Get PDF
    AbstractTank-binding kinase 1 (TBK1) serves as an important component of multiple signaling pathways. While the majority of research on TBK1 has focused on its role in innate immunity, critical functions for TBK1 in autophagy and cancer are beginning to emerge. This review highlights recent structural and biochemical studies that provide insights into the molecular mechanism of TBK1 activation and summarizes what is known to date about TBK1 substrate selection. Growing evidence suggests that both processes rely on TBK1 subcellular localization, with a variety of adaptor proteins each directing TBK1 to discrete signaling complexes for different cellular responses. Further study of TBK1-mediated pathways will require careful consideration of TBK1 mechanisms of activation and specificity for proper dissection of these distinct signaling cascades

    Prognosis of neonatal tetanus in the modern management era: an observational study in 107 Vietnamese infants.

    Get PDF
    OBJECTIVES: Most data regarding the prognosis in neonatal tetanus originate from regions where limited resources have historically impeded management. It is not known whether recent improvements in critical care facilities in many low- and middle-income countries have affected indicators of a poor prognosis in neonatal tetanus. We aimed to determine the factors associated with worse outcomes in a Vietnamese hospital with neonatal intensive care facilities. METHODS: Data were collected from 107 cases of neonatal tetanus. Clinical features on admission were analyzed against mortality and a combined endpoint of 'death or prolonged hospital stay'. RESULTS: Multivariable analysis showed that only younger age (odds ratio (OR) for mortality 0.69, 95% confidence interval (CI) 0.48-0.98) and lower weight (OR for mortality 0.06, 95% CI 0.01-0.54) were significantly associated with both the combined endpoint and death. A shorter period of onset (OR 0.94, 95% CI 0.88-0.99), raised white cell count (OR 1.17, 95% CI 1.02-1.35), and time between first symptom and admission (OR 3.77, 95% CI 1.14-12.51) were also indicators of mortality. CONCLUSIONS: Risk factors for a poor outcome in neonatal tetanus in a setting with critical care facilities include younger age, lower weight, delay in admission, and leukocytosis

    Analysis of prerequisites violations financial stability

    No full text
    Світова економічна криза 2007–2008 років і потрясіння, що охо- пили одночасно секторальні ринки кредитування, страхування, нерухомості та цінних паперів, продемонстрували, що системні ризики підтримки фінансової стабільності не були належним чином оцінені регуляторами

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified
    corecore