332 research outputs found

    Simple Coherent Polarization Manipulation Scheme for Generating High Power Radially Polarized Beam

    Full text link
    We present a simple novel scheme that converts a Gaussian beam into an approximated radially polarized beam using coherent polarization manipulation together with Poynting walk-off in birefringent crystals. Our scheme alleviates the interferometric stability required by previous schemes that implemented this coherent mode summation using Mach-Zehnder-like interferometers. A symmetrical arrangement of two walk-off crystals with a half-wave plate, allows coherence control even when the laser has short temporal coherence length. We generated 14 watts of radially polarized beam from an Ytterbium fiber laser, only limited by the available fiber laser power.Comment: Submitting for publicatio

    Quantum Physics and Human Language

    Get PDF
    Human languages employ constructions that tacitly assume specific properties of the limited range of phenomena they evolved to describe. These assumed properties are true features of that limited context, but may not be general or precise properties of all the physical situations allowed by fundamental physics. In brief, human languages contain `excess baggage' that must be qualified, discarded, or otherwise reformed to give a clear account in the context of fundamental physics of even the everyday phenomena that the languages evolved to describe. The surest route to clarity is to express the constructions of human languages in the language of fundamental physical theory, not the other way around. These ideas are illustrated by an analysis of the verb `to happen' and the word `reality' in special relativity and the modern quantum mechanics of closed systems.Comment: Contribution to the festschrift for G.C. Ghirardi on his 70th Birthday, minor correction

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    How residents and interns utilise and perceive the personal digital assistant and UpToDate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this era of evidence-based medicine, doctors are increasingly using information technology to acquire medical knowledge. This study evaluates how residents and interns utilise and perceive the personal digital assistant (PDA) and the online resource UpToDate.</p> <p>Methods</p> <p>This is a questionnaire survey of all residents and interns in a tertiary teaching hospital.</p> <p>Results</p> <p>Out of 168 doctors, 134 (79.8%) responded to the questionnaire. Only 54 doctors (40.3%) owned a PDA. Although these owners perceived that the PDA was most useful for providing drug information, followed by medical references, scheduling and medical calculators, the majority of them did not actually have medical software applications downloaded on their PDAs. The greatest concerns highlighted for the PDA were the fear of loss and breakage, and the preference for working with desktop computers and paper. Meanwhile, only 76 doctors (56.7%) used UpToDate, even though the hospital had an institutional subscription for it. Although 93.4% of these users would recommend UpToDate to a colleague, only 57.9% stated that the use of UpToDate had led to a change in their management of patients.</p> <p>Conclusion</p> <p>Although UpToDate and various PDA software applications were deemed useful by some of the residents and interns in our study, both digital tools were under-utilised. More should be done to facilitate the use of medical software applications on PDAs, to promote awareness of tools for evidence-based medicine such as UpToDate, and to facilitate the application of evidence-based medicine in daily clinical practice.</p

    Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method.

    Get PDF
    Coronavirus disease 2019 (COVID-19) pandemic has caused unprecedented pressure on healthcare system globally. Lack of high-quality evidence on the respiratory management of COVID-19-related acute respiratory failure (C-ARF) has resulted in wide variation in clinical practice. Using a Delphi process, an international panel of 39 experts developed clinical practice statements on the respiratory management of C-ARF in areas where evidence is absent or limited. Agreement was defined as achieved when &gt; 70% experts voted for a given option on the Likert scale statement or &gt; 80% voted for a particular option in multiple-choice questions. Stability was assessed between the two concluding rounds for each statement, using the non-parametric Chi-square (χ &lt;sup&gt;2&lt;/sup&gt; ) test (p &lt; 0·05 was considered as unstable). Agreement was achieved for 27 (73%) management strategies which were then used to develop expert clinical practice statements. Experts agreed that COVID-19-related acute respiratory distress syndrome (ARDS) is clinically similar to other forms of ARDS. The Delphi process yielded strong suggestions for use of systemic corticosteroids for critical COVID-19; awake self-proning to improve oxygenation and high flow nasal oxygen to potentially reduce tracheal intubation; non-invasive ventilation for patients with mixed hypoxemic-hypercapnic respiratory failure; tracheal intubation for poor mentation, hemodynamic instability or severe hypoxemia; closed suction systems; lung protective ventilation; prone ventilation (for 16-24 h per day) to improve oxygenation; neuromuscular blocking agents for patient-ventilator dyssynchrony; avoiding delay in extubation for the risk of reintubation; and similar timing of tracheostomy as in non-COVID-19 patients. There was no agreement on positive end expiratory pressure titration or the choice of personal protective equipment. Using a Delphi method, an agreement among experts was reached for 27 statements from which 20 expert clinical practice statements were derived on the respiratory management of C-ARF, addressing important decisions for patient management in areas where evidence is either absent or limited. The study was registered with Clinical trials.gov Identifier: NCT04534569

    Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement

    Get PDF
    Motor imagery-based brain–computer interface (MI-BCI) has been proposed as a rehabilitation tool to facilitate motor recovery in stroke. However, the calibration of a BCI system is a time-consuming and fatiguing process for stroke patients, which leaves reduced time for actual therapeutic interaction. Studies have shown that passive movement (PM) (i.e., the execution of a movement by an external agency without any voluntary motions) and motor imagery (MI) (i.e., the mental rehearsal of a movement without any activation of the muscles) induce similar EEG patterns over the motor cortex. Since performing PM is less fatiguing for the patients, this paper investigates the effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of classification accuracy. For this purpose, a new adaptive algorithm called filter bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm linearly transforms the band-pass-filtered MI data such that the distribution difference between the MI and PM data is minimized. The effectiveness of the proposed algorithm is evaluated by an offline study on data collected from 16 healthy subjects and 6 stroke patients. The results show that the proposed FB-DSA algorithm significantly improved the classification accuracies of the PM and MI calibrated models (p < 0.05). According to the obtained classification accuracies, the PM calibrated models that were adapted using the proposed FB-DSA algorithm outperformed the MI calibrated models by an average of 2.3 and 4.5 % for the healthy and stroke subjects respectively. In addition, our results suggest that the disparity between MI and PM could be stronger in the stroke patients compared to the healthy subjects, and there would be thus an increased need to use the proposed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from PM
    corecore