8,976 research outputs found

    Beyond the border : Border bottlenecks hamper trade

    Get PDF
    Mexico ; North American Free Trade Agreement ; Texas ; Trade

    Sedimentation in an artificial lake -Lake Matahina, Bay of Plenty

    Get PDF
    Lake Matahina, an 8 km long hydroelectric storage reservoir, is a small (2.5 km2), 50 m deep, warm monomictic, gorge-type lake whose internal circulation is controlled by the inflowing Rangitaiki River which drains a greywacke and acid volcanic catchment. Three major proximal to distal subenvironments are defined for the lake on the basis of surficial sediment character and dominant depositional process: (a) fluvial-glassy, quartzofeld-spathic, and lithic gravel-sand mixtures deposited from contact and saltation loads in less than 3 m depth; (b) (pro-)deltaic-quartzofeldspathic and glassy sand-silt mixtures deposited from graded and uniform suspension loads in 3-20 m depth; and (c) basinal-diatomaceous, argillaceous, and glassy silt-clay mixtures deposited from uniform and pelagic suspension loads in 20-50 m depth. The delta face has been prograding into the lake at a rate of 35-40 m/year and vertical accretion rates in pro-delta areas are 15-20 cm/year. Basinal deposits are fed mainly from river plume dispersion involving overflows, interflows, and underflows, and by pelagic settling, and sedimentation rates behind the dam have averaged about 2 cm/year. Occasional fine sand layers in muds of basinal cores attest to density currents or underflows generated during river flooding flowing the length of the lake along a sublacustrine channel marking the position of the now submerged channel of the Rangitaiki River

    Electrode thickness measurement of a Si(Li) detector for the SIXA array

    Get PDF
    Cathode electrodes of the Si(Li) detector elements of the SIXA X-ray spectrometer array are formed by gold-palladium alloy contact layers. The equivalent thickness of gold in one element was measured by observing the characteristic L-shell X-rays of gold excited by monochromatised synchrotron radiation with photon energies above the L3 absorption edge of gold. The results obtained at 4 different photon energies below the L2 edge yield an average value of 22.4(35) nm which is consistent with the earlier result extracted from detection efficiency measurements. PACS: 29.40.Wk; 85.30.De; 07.85.Nc; 95.55.Ka Keywords: Si(Li) detectors, X-ray spectrometers, X-ray fluorescence, detector calibration, gold electrodes, synchrotron radiationComment: 10 pages, 4 PostScript figures, uses elsart.sty, submitted to Nucl. Instrum. Meth.

    The effects of two weeks self-regulated high-intensity interval training on cardiorespiratory fitness, exercise enjoyment, and intentions to repeat

    Get PDF
    This study investigated the effect of low-volume self-regulated high-intensity interval training (SR-HIIT) on cardiorespiratory fitness (CRF), exercise enjoyment, and intentions to repeat. Ten untrained, physically active adults (five males and five females, age: 20.3 ± 0.5 years) undertook a 2-week control period followed by 2-weeks SR-HIIT (6 x 10 min cycle ergometer sessions). Sessions involved alternate bouts at a rating of perceived exertion of 17 (work) and 11 (recovery), with bout durations self-regulated by the participant. Maximal aerobic capacity showed a small increase from post-control (3.14 ± 1.03 L.min-1) to post-training (3.45 ± 1.14 L.min-1; ̅diff 0.31, 95%CI 0.06 L.min-1, d = 0.28, 95%CL 0.11, 0.45). First ventilatory threshold showed a large increase from post-control (65.6 ± 2.1% V̇O2max) to post-training (68.0 ± 2.4% V̇O2max; ̅diff 2.4, 95%CI 1.2%, d = 0.96, 95%CL 0.27, 1.62). Post-exercise enjoyment showed small (̅diff 3.5, 95%CI 8.1 AU, d = 0.31) and medium (̅diff 6.9, 95%CI 6.7 AU, d = 0.68) increases from SR-HIIT session 1-3 and 3-6, respectively. There were trivial to medium increases in intention to repeat SR-HIIT once per week (d = 0.06 to 0.63) and three times per week (d = 0.28 to 0.60). Low-volume SR-HIIT elicits meaningful improvements in CRF, is enjoyable, and facilitates good intentions to repeat, and may be an additional option for implementing HIIT to improve general population health and fitness

    Computational design of natural laminar flow wings for transonic transport application

    Get PDF
    Two research programs are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wind planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first program supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. Boundary-layer and static-pressure data will be measured on this design during the supporting wind-tunnel and flight tests. These data will then be analyzed and used to infer the relationship between crossflow and Tollmein-Schlichting disturbances on laminar boundary-layer transition. A wing was designed computationally for a corporate transport aircraft in the second program. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs. Wing surface pressure distributions, which support the design objective and were derived from transonic three-dimensional analyses codes, are also presented. Current status of each of the research programs is included in the summary

    CULA 299.01: Culinary Arts Capstone

    Get PDF
    • 

    corecore