22,505 research outputs found

    The flow physics of helicopter brownout

    Get PDF
    The formation of the dust cloud that is associated with low-level helicopter operations in desert environments has been simulated using the Vorticity Transport Model together with a coupled model to represent the entrainment and subsequent transport of particulate matter through the flow. A simple thin-layer theory, supported by simulations performed using the more physically-representative numerical model, is used to explain the formation of characteristic sheet- and filament-like structures in the dust cloud in terms of the interactions between individual vortical filaments and the ground. In parts of the flow, for instance near the ground vortex that is formed under the leading edge of the rotor when in forward flight, the dust cloud becomes more space-filling than sheet-like in character, and the theory suggests that this is a result of the dust distribution having been processed by multiple vortices over a significant period of time. The distribution of the regions on the ground plane from which significant entrainment of dust into the flow takes place is shown to be influenced strongly by the unstable nature of the vortical structures within the flow. It is suggested that the effect of this vortical instability, when integrated over the timescales that are characteristic of the formation of the dust cloud, is to de-sensitize the gross characteristics of the dustcloud to the details of the wake structure at its inception on the rotor blades. This suggests that the formation of the brownout cloud may be relatively insensitive to the detailed design of the blades of the rotors and may thus be influenced only by less subtle characteristics of the helicopter system

    Helicopter brownout - can it be modelled?

    Get PDF
    Significant progress has been made to date in modelling, computationally, the formation and development of the dust cloud that forms in the air surrounding the rotorcraft under brownout conditions. Modern computational methods are able to replicate not only the development of the dust cloud in appropriate operational scenarios, but also the sensitivity of the shape and density of the dust cloud to the detailed design of the rotorcraft. Results so far suggest that attempts to ameliorate brownout by aerodynamic means, for instance by modifying the rotor properties, will be frustrated to some extent by the inherent instability of the °flow field that is produced by the helicopter. Nonetheless, very recent advances in understanding the fundamental mechanisms that lead to the formation of the dust cloud may allow substantial progress to be made once certain elements of the basic physics of the problem are more fully understood and better quantified

    The effect of rotor design on the fluid dynamics of helicopter brownout

    Get PDF
    Helicopters operating close to the ground in dusty environments tend to generate large clouds of dust in the surrounding air. These clouds can obscure the pilot's view of the ground and lead to a dangerous condition known as brownout. Given the intimate relationship between the induced flow feld around the rotor and the process through which the particulate matter becomes airborne and is subsequently transported, it has been speculated that the design of its rotor may influence the shape and size of the dust clouds that are produced by any particular type of helicopter. This paper presents a study of the influence of two key geometric properties of the rotor on the development of these dust clouds. A particle transport model is coupled to Brown's Vorticity Transport Model to represent the dynamics of the particulate-air system surrounding a generic helicopter rotor under various flight conditions. The number of blades on the rotor is altered, whilst keeping the solidity constant, thus altering the distribution of vorticity that is released onto the ground. In addition, the twist of the blades is varied in order to investigate the effect of the resultant changes in the distribution of induced downwash on the evolution of the dust cloud. The study suggests that, in general, the larger the number of blades, and the higher the blade twist, the less dense the dust clouds that are produced under brownout conditions. It appears thus that the characteristics of the dust clouds are indeed sensitive to the geometry of the rotor and hence that careful aerodynamic design may allow the severity of brownout to be ameliorated

    Harnessing Technology: new modes of technology-enhanced learning: a case study series

    Get PDF
    This report presents the outcomes and conclusions from a series of 18 case studies exploring the innovative use of technology for learning and teaching using new modes of technology

    Long Run Covariance Matrices for Fractionally Integrated Processes

    Get PDF
    An asymptotic expansion is given for the autocovariance matrix of a vector of stationary long-memory processes with memory parameters d satisfying 0Asymptotic expansion, Autocovariance function, Fourier integral, Long memory, Long run variance, Spectral density

    Clinical Observation Reflections from Students in an Interdisciplinary Palliative Care Course

    Get PDF
    The purpose of this study was to gain insight into how a brief clinical observation encounter contributed to students’ experiences in an interdisciplinary palliative care course. This course was required of all graduate nursing students and was available as an elective for medical and other healthcare professions students at a healthcare sciences university. The students were required to spend approximately 8 to 12 hours attending interdisciplinary team meetings or accompanying a team on rounds and patient visits. The students’ summary narratives of their observation experience were analyzed in this qualitative study that focused on six categories of feedback: (1) patients’ and families’ reactions, (2) communication issues with patients and families, (3) how the palliative care team speaks with the patient and family, (4) communication within the interdisciplinary team, (5) students’ reflections, and (6) students’ suffering. This study demonstrated that a clinical observation activity can be a valuable introduction to palliative care principles for healthcare students in an interdisciplinary course. Students benefited from gaining insight into family/practitioner communications regarding difficult issues, interdisciplinary roles and cooperation, and application of palliative care principles to clinical practice. Further research is required to identify appropriate interventions to deal with student distress resulting from such early career clinical encounters

    A note on q-Bernstein polynomials

    Full text link
    In this paper we constructed new q-extension of Bernstein polynomials. Fron those q-Berstein polynomials, we give some interesting properties and we investigate some applications related this q-Bernstein polynomials.Comment: 13 page
    corecore