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Abstract

An asymptotic expansion is given for the autocovariance matrix of a vector of
stationary long-memory processes with memory parameters d ∈ [0, 1/2). The
theory is then applied to deliver formulae for the long run covariance matrices of
multivariate time series with long memory.
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1. Motivation

Stationary long memory processes have extensive applications in economics and finance, par-
ticularly with regard to modeling financial variables like volatility and trading volume. The
autocovariances of such processes decay according to a power law and the spectra are un-
defined at the origin. Correspondingly, conventional formulae and estimation procedures for
long run variance matrices that apply under weak dependence are no longer relevant under
long range dependence. Nonetheless, some modified versions of these (typically infinite di-
mensional) quantities do exist and are useful in the development of asymptotics involving
long memory time series, for instance, in the estimation of fractionally cointegrated sys-
tems (Kim and Phillips, 1999; Robinson and Hualde, 2003; Velasco, 2003; Davidson, 2004;

1Phillips acknowledges partial support from a Kelly Fellowship and from the NSF under Grant No. SES
04-142254. Correspondence to: Peter C.B. Phillips, Department of Economics, Yale University, P.O. Box
208268, New Haven, CT 06520-8268, Email: peter.phillips@yale.edu
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Davidson and Hashimzade, 2007). Henry and Zaffaroni (2003) provide a recent survey of the
many applications of fractional integration and long-range dependence in macroeconomics
and finance.

This note shows how to define long run covariance matrices for general multivariate frac-
tionally integrated processes and we focus here on cases of long range dependence, some
results on overdifferenced processes being given in earlier work (Phillips, 1995, lemma 8.1).
We first develop a general form of asymptotic expansion for the autocovariance matrix of
such a multivariate process. The approximation induced by this expansion is of independent
interest. It has a simple form which gives the power law decay structure of the elements
of the autocovariance matrix and reveals an interesting asymmetric structure for the cross
autocovariances. In the scalar case, the result reduces to a formula obtained recently in
Lieberman and Phillips (2006). The expansion is particularly useful in developing a limiting
form of a standardized sum of the autocovariance matrices, allowing us to define the long
run variance matrix of a multivariate fractional process. In contrast to the autocovariance
function, the long run variance matrix has a simple symmetric form that depends on the
long memory parameters of the constituent processes and the long run variance matrix of the
short memory components.

2. Results

Let Xt be a real-valued covariance stationary m-vector time series generated by the system

⎛⎜⎝ (1− L)d1 0
. . .

0 (1− L)dm

⎞⎟⎠
⎛⎜⎝ X1t −EX1t

...
Xmt −EXmt

⎞⎟⎠ =

⎛⎜⎝ u1t
...

umt

⎞⎟⎠ , 0 ≤ d1, . . . , dm <
1

2
,

(1)

where ut = (u1t, . . . , umt)
0 is a covariance stationary process whose spectral density matrix

fuu (λ) is assumed to be continuously differentiable on [−π, π] and bounded away from zero
(in the sense of positive definite matrices) at the zero frequency λ = 0. The smoothness
condition on fuu (λ) is needed to develop an asymptotic expansion of the autocovariance
function defined by a Fourier integral inversion of fuu (λ) .

Xt is a multivariate extension of a scalar fractionally integrated process (the so-called
I(d) process) and each component Xat exhibits long-range dependence whenever da > 0.

Xt reduces to a multivariate ARFIMA process when ut is a vector ARMA process, but the
specification (1) does not require ut to be of this or any other parametric form.

Let fxx(λ) denote the spectral density of Xt, so that the autocovariance matrix is given
by

Γxx (k) = E(Xt −EXt)(Xt+k −EXt)
0 =

Z π

−π
eikλfxx(λ)dλ.
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Define

Φ(λ) = diag
³
(1− eiλ)−d1 , · · · , (1− eiλ)−dm

´
= diag

³
(1− eiλ)−da

´
,

and then the spectral density of Xt satisfies (e.g., Hannan, 1970, p.61)

fxx(λ) = Φ(λ)fuu(λ)Φ
∗(λ), (2)

where the affix ∗ signifies complex conjugate transpose. As is well known, the memory pa-
rameters, da, govern the long-run dynamics of Xt and the behavior of its spectrum fxx(λ)

around the origin. Often, when attention is focused on long-run dynamics, it is useful to spec-
ify the spectral density only locally in the vicinity of the origin and to avoid short-run dynamic
specifications concerning ut altogether. In the multivariate case, we also are interested in the
behavior of cross spectra at the origin and the corresponding cross autocovariances at long
lags, as well as the individual spectra and autocovariance functions.

A first order approximation to the behavior of fxx(λ) at the origin is easily seen to be
given by

fxx(λ) ∼ diag(λ−daeiπda/2)fuu(0)diag(λ−dae−iπda/2), λ→ 0+, (3)

and higher order approximations may be similarly obtained (e.g., Phillips and Shimotsu,
2004; Shimotsu, 2006). The factors involving the complex exponentials eiπda/2 turn out to be
important in the off diagonal elements of fxx(λ) and these figure in the analysis below. When
0 < da < 1/2, the individual time series Xat have long memory and the j-lag autocovariances
decrease slowly, according to the power law j2da−1 as j →∞. In this case, the autocovariances
are not summable and the usual formula for the long run variance of Xat is undefined.
However, as shown below, upon suitable standardization, we may define the long run variances
and covariances of the elements of Xt.

We start with the following result, which gives an asymptotic approximation to the au-
tocovariance matrix function for long lags. Lieberman and Phillips (2006) gave a complete
asymptotic series expansion of the autocovariance function of a scalar long memory time
series. Under stronger smoothness conditions on the spectrum fuu(λ), similar asymptotic se-
ries may be developed here. The theorem below gives the leading term in the corresponding
expansion for the multivariate case, which is sufficient for the present purpose of developing
a formula for the long run variance matrix. The proof is given in the Appendix.

Theorem 1 If da ∈ [0, 1/2) for all a = 1, ..,m, and the spectral density matrix fuu (λ) of
ut is continuously differentiable, then

[Γxx (k)]ab =
2fuaub (0)Γ (1− da − db) sin (πdb)

k1−da−db
+O

µ
1

k2−da−db

¶
. (4)
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Remark 1. Note that the asymptotic approximation (4) is asymmetric. Suppose for example
that da < db and fuaub (0) > 0. Then, for large k

γab (k) =
2fuaub (0)Γ (1− da − db)

k1−da−db
sin {πdb}+O

µ
1

k2−da−db

¶
>
2fubua (0)Γ (1− da − db)

k1−da−db
sin {πda}+O

µ
1

k2−da−db

¶
= γba (k) ,

since sin {πda} < sin {πdb} . In particular, when da = 0 < db < 1/2, sin {πda} = 0 and
we have the interesting phenomena that γba (k) decays faster than the power law kdb−1,

corresponding to the short memory property of Xat, whereas γab (k) decays according to
the power law kdb−1 as k →∞, corresponding to the long memory property of Xbt. This
asymmetry is explained by the fact that γab (k) is dominated by the slow decay in the
impulse responses affecting Xbt+k, whereas the impulse responses and autocovariances
of Xat+k decay faster than any power rate1, thereby determining the different behavior
of γba (k) when 0 = da < db < 1/2.

Remark 2. When da = db, we have

γaa (k) =
2fuaua (0)Γ (1− 2da)

k1−2da
sin {πda}+O

µ
1

k2−2da

¶
, (5)

corresponding to the leading term given in the asymptotic expansion of the autocovari-
ance function for the scalar case in Lieberman and Phillips (2006).

We now define the standardization matrix Dn = diag
¡
nd1 , ..., ndm

¢
, the partial sum St =Pt

s=1Xs, and let d = mina≤m da for the following theorem, whose proof is in the Appendix.

Theorem 2 If da ∈ (0, 1/2) for all a = 1, ..,m, and the spectral density matrix fuu (λ) of
ut is continuously differentiable, then as n→∞∙

1

n
D−1n E

©
SnS

0
n

ª
D−1n

¸
ab

→ 2πfuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
π (da + db) (1 + da + db)

. (6)

Remark 3. The diagonal elements of (6) are∙
1

n
D−1n E

©
SnS

0
n

ª
D−1n

¸
aa

→ 2πfuaua (0)Γ (1− 2da) sin (πda)
πda (1 + 2da)

= lrvar (uat)
Γ (1− 2da) sin (πda)

πda (1 + 2da)
, (7)

and, as da → 0, this formula tends to 2πfuu (0) = lrvar (ut) , the limiting variance of
the standardized partial sum n−1/2Sn = n−1/2

Pn
t=1 ut.

1This may be proved directly using a Fourier integral asymptotic expansion when the spectrum of the short
memory component is analytic.
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Remark 4. In the scalar case with ut ∼ iid
¡
0, σ2u

¢
, Sowell (1990) showed that

lim
n→∞

var (Sn)
n1+2d

= σ2u
Γ (1− 2d)

(1 + 2d)Γ (1 + d)Γ (1− d)
. (8)

We may compare this formula with (7). By the reflection formula for the gamma function
we have Γ (d)Γ (1− d) = π

sin(πd) , so that (7) may be written in the alternate form

2πfuu (0) sin {πd}Γ (1− 2d)
πd (1 + 2d)

=
2πfuu (0)Γ (1− 2d)

d (1 + 2d)Γ (d)Γ (1− d)

=
2πfuu (0)Γ (1− 2d)

(1 + 2d)Γ (d+ 1)Γ (1− d)
, (9)

which clearly reduces to (8) in the case of iid ut.

Remark 5. Formula (7) for the asymptotic variance corresponds to that delivered by the
covariance kernel of the limiting fractional Brownian motion. In particular, it is well
known (e.g. Chan and Terrin, 1995; Marinucci and Robinson, 2000) that under certain
regularity conditions we have the weak convergence

1

n
1
2
+da

[nr]X
t=1

Xat
d→ Bda(r).

It is often convenient to define the limiting fractional Brownian motions Bda(r) in terms
of their harmonizable representations (see Samorodnitsky and Taqqu, 1994; Chan and
Terrin, 1995; Davidson and Hashimzade, 2007) as follows

Bda(r) =
1√
2π

Z
R

eiλr − 1
iλ

(iλ)−da dWa(λ), (10)

where {Wa(λ) : a = 1, ...,m} are complex-valued Gaussian random measures satisfying

dWa(λ) = dWa (−λ),
E[dWa(λ)] = 0,

E
h
dWa(λ)dWb(μ)

i
=

½
ωabdλ , λ = μ
0 , λ 6= μ

, a, b = 1, ..,m,

for λ ∈ [−π, π] , where ωab = 2πfuaua (0) and where the bar denotes complex conjuga-
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tion. Observe that

E
©
Bda(1)

2
ª
=

ωaa
2π

Z
R

¯̄̄̄
eiλ − 1
iλ

¯̄̄̄2
|λ|−2da dλ

=
ωaa
2π

Z
R

2− 2 cosλ
λ2+2da

dλ =
2ωaa
π

Z ∞

0

1− cosλ
λ2+2da

dλ

=
4ωaa
π

Z ∞

0

sin2 λ
2

λ2+2da
dλ = −2ωaa

π
Γ(−1− 2da) cos

µ
(1 + 2da)π

2

¶
(11)

= −2ωaa
π
Γ(−1− 2da) cos

µ
(1 + 2da)π

2

¶
=
2ωaa
π
Γ(−1− 2da) sin (daπ)

=
2ωaa
π

π sin (daπ)

sin (π (2 + 2da))Γ (2 + 2da)

=
2ωaa sin (daπ)

sin (2πda)Γ (2 + 2da)
=

ωaa
cos (πda)Γ (2 + 2da)

(12)

using Gradshteyn and Ryzhik (2000, formula 3.823) in (11), c.f. Davidson and Hashimzade
(2007). Applying the reflection formula Γ (1− z)Γ (z) = π

sin(πz) with z = 2 + 2da so
that 1− z = −1− 2da, we have

Γ(2 + 2da) cosπda

=
π

sin (2πda + 2π)Γ (−1− 2da)
cosπda

=
π

sin (2πda)Γ (−1− 2da)
cosπda

=
π (−2da) (−1− 2da)
2 sin (πda)Γ (1− 2da)

=
πda (1 + 2da)

sin (πda)Γ (1− 2da)
, (13)

using sin (2πda) = 2 sinπda cosπda. It now follows from (12) and (13) that

E
©
Bda(1)

2
ª
=

ωaa
Γ(2 + 2da) cos (πda)

=
ωaaΓ (1− 2da) sin (πda)

πda (1 + 2da)

=
ωaaΓ (1− 2da)

da (1 + 2da)Γ (1− da)Γ (da)
=

ωaaΓ (1− 2da)
(1 + 2da)Γ (1− da)Γ (1 + da)

,

where we use the reflection formula again in the form Γ (1− da)Γ (da) =
π

sin(πda)
, leading

to the stated correspondence with (7) and (9). Expression (12) was also obtained in
Davidson and Hashimzade (2007, formula 2.6 with κ = 1). Similar arguments show
that

E {Bda(1)Bdb(1)} =
ωabΓ (1− da − db) {sin (πdb) + sin (πda)}

π (da + db) (1 + da + db)
,

corresponding to (6).
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3. Discussion and Application

Some estimation procedures like fully modified estimation in a fractional cointegration model
(Kim and Phillips, 1999; Davidson, 2004) involve unknown long run variance and covariance
matrices for fractional processes such as those given in Theorem 2, which need to be estimated
consistently for these procedures to be implemented. Consistent estimation of these long run
covariances can be accomplished by a stepwise procedure that involves separate consistent
estimation of the memory parameters and the long run variance matrix, Ωuu = 2πfuu (0) of
ut. The memory parameters {da : a = 1, ...,m} can be estimated by any consistent semipara-
metric method, such as the local Whittle (Robinson, 1995) or exact local Whittle (Shimotsu
and Phillips, 2005) procedures. Using estimates d̂a obtained in this way, estimates of the
residuals uat can be constructed by the truncated filtering operation

tX
k=0

bπk ¡Xat−k − X̄a

¢
= buat, (14)

where bπk = Γ(k − bda)/{Γ(k + 1)Γ(−bda)}. Using buat, the long run variance matrix Ωuu of ut
may then be consistently estimated by any conventional HAC procedure2. These estimates of
Ωuu and da may then be plugged into formulae such as those given in Theorem 2 to produce
consistent estimates of the required long run covariances of the fractional processes.
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Appendix : Proofs

Proof of Theorem 1. The derivation of (4) uses an asymptotic expansion of the Fourier
inversion formula for Γxx (k) , which can be written as

Γxx (k) =

Z π

−π
eiwkL

¡
eiw
¢
fuu (w)L

¡
e−iw

¢
dw, (15)
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where

L
¡
eiw
¢
= diag

n¡
1− eiw

¢−d1
, ...,

¡
1− eiw

¢−dmo
.

In what follows, we will work with the ab’th element of Γxx (k) denoted by

γab (k) = E {(Xat −EXat) (Xbt+k −EXbt+k)} .

Observe that |1− eiw| = |2 sin(w/2)| and

arg(1− e−iw) =

½
(w − π)/2 for 0 ≤ w < π
(π − w)/2 for − π ≤ w < 0

,

so that

1− eiw =

½
|2 sin(w/2)|ei(w−π)/2 0 ≤ w < π

|2 sin(w/2)|ei(π−w)/2 −π ≤ w < 0
,

and then

(1− eiw)θ =

½
|2 sin(w/2)|θei(w−π)θ/2 0 ≤ w < π

|2 sin(w/2)|θei(π−w)θ/2 −π ≤ w < 0

=

⎧⎪⎨⎪⎩ |w|θ
¯̄̄
2 sin(w/2)

w

¯̄̄θ
ei(w−π)θ/2 0 ≤ w < π

|w|θ
¯̄̄
2 sin(w/2)

w

¯̄̄θ
ei(π−w)θ/2 −π ≤ w < 0

.

It follows that for 0 ≤ w < π¡
1− eiw

¢−da ¡
1− e−iw

¢−db fuaub (w)
= w−da

µ
2 sin(w/2)

w

¶−da
e−

i(w−π)da
2

× w−db
µ
2 sin(w/2)

w

¶−db
e−

i(π−w)db
2 fuaub (w)

= e
iπ(da−db)

2 w−da−db
µ
2 sin(w/2)

w

¶−da−db
e−

iw(da−db)
2 fuaub (w) ,

and for −π < w ≤ 0

¡
1− eiw

¢−da ¡
1− e−iw

¢−db fuaub (w)
= |w|−da

¯̄̄̄
2 sin(w/2)

w

¯̄̄̄−da
e−

i(w+π)da
2

× |w|−db
¯̄̄̄
2 sin(w/2)

w

¯̄̄̄−db
e−

i(−w−π)db
2

= e−
iπ(da−db)

2 |w|−da−db
¯̄̄̄
2 sin(w/2)

w

¯̄̄̄−da−db
e−

iw(da−db)
2 fuaub (w) .
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Hence,

γab (k) =

Z π

−π
eiwk

¡
1− eiw

¢−da ¡
1− e−iw

¢−db fuaub (w) dw
=

½Z π

0
+

Z 0

−π

¾
eiwk

¡
1− eiw

¢−da ¡
1− e−iw

¢−db fuaub (w) dw
= e

iπ(da−db)
2

Z π

0
eiwk

"µ
2 sin(w/2)

w

¶−da−db
fuaub (w) e

− iw(da−db)
2

#
w−da−dbdw

+ e−
iπ(da−db)

2

Z 0

−π
eiwk

"¯̄̄̄
2 sin(w/2)

w

¯̄̄̄−da−db
fuaub (w) e

− iw(da−db)
2

#
|w|−da−db dw

= e
iπ(da−db)

2

Z π

0
eiwk

"µ
2 sin(w/2)

w

¶−da−db
fuaub (w) e

− iw(da−db)
2

#
w−da−dbdw

+ e−
iπ(da−db)

2

Z π

0
e−iwk

"µ
2 sin(w/2)

w

¶−da−db
fuaub (−w) e

iw(da−db)
2

#
w−da−dbdw

= e
iπ(da−db)

2

Z π

0
eiwkFuaub (w)w

−da−dbdw + e−
iπ(da−db)

2

Z π

0
e−iwkFuaub (−w)w−da−dbdw.

(16)

where Fuaub (w) =
³
2 sin(w/2)

w

´−da−db
fuaub (w) e

− iw(da−db)
2 ∈ C1 [−π, π] .

When at least one of da or db > 0, the two integrals in (16) have critical points (singu-
larities in the integrand) at the origin w = 0. For Fourier integrals of this type asymptotic
expansions for large k were originally developed by Erdélyi (1956), a convenient reference
being Bleistein and Handelsman (1986). In particular, if F (w) ∈ C∞ [a, b] , and α and β are
not integers, then Erdélyi’s result implies that the integral

I (k) =

Z b

a
eikw (w − a)α−1 (b− w)β−1 F (w) dw (17)

has the following complete asymptotic series representation as k →∞

I (k) = Ia (k) + Ib (k) ,

where

Ia (k) ∼
∞X
n=0

dn

dan

n
(b− a)β−1 F (a)

o Γ (n+ α)

n!kn+α
e
πi
2
(n+α)+ika, (18)

and

Ib (k) ∼
∞X
n=0

dn

dbn

n
(b− a)α−1 F (b)

o Γ (n+ β)

n!kn+β
e
πi
2
(n−β)+ikb. (19)
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These expansions hold to the first term n = 0 provided F (w) ∈ C1 [a, b] , and this degree of
smoothness is all that is required for the present application.

Specializing the expansion of (17) to the present case, we first consider the integralZ π

0
eiwkFuaub (w)w

−da−dbdw,

and set a = 0, b = π, β = 1, and α = 1− da − db in formula (18). We deduce thatZ π

0
eikwwα−1Fuaub (w) dw

=
∞X
n=0

dn

dan
{Fuaub (a)}a=0

Γ (n+ α)

n!kn+α
e
πi
2
(n+α)+ika

=
Γ (1− da − db) e

πi
2
(1−da−db)

k1−da−db
Fuaub (0) +O

µ
1

k2−da−db

¶
. (20)

Using the same settings a = 0, b = π, β = 1, and α = 1− da − db again, we next find that

Z π

0
e−iwkFuaub (−w)w−da−dbdw

=
∞X
n=0

dn

dan
{Fuaub (a)}a=0

Γ (n+ α)

n! (−k)n+α
e
πi
2
(n+α)+ika

=
Γ (1− da − db) e

πi
2
(1−da−db)

k1−da−dbeπi(1−da−db)
Fuaub (0) +O

µ
1

k2−da−db

¶
=
Γ (1− da − db) e

−πi
2
(1−da−db)

k1−da−db
Fuaub (0) +O

µ
1

k2−da−db

¶
. (21)

Combining results (20) and (21) in (16) we obtain

γab (k) = e
iπ(da−db)

2

Z π

0
eiwkFuaub (w)w

−da−dbdw + e−
iπ(da−db)

2

Z π

0
e−iwkFuaub (−w)w−da−dbdw

= e
iπ(da−db)

2
Γ (1− da − db) e

πi
2
(1−da−db)

k1−da−db
Fuaub (0)

+ e−
iπ(da−db)

2
Γ (1− da − db) e

−πi
2
(1−da−db)

k1−da−db
Fuaub (0) +O

µ
1

k2−da−db

¶
=
Γ (1− da − db)

k1−da−db
Fuaub (0)

n
e
πi
2
(1−2db) + e−

πi
2
(1−2db)

o
+O

µ
1

k2−da−db

¶
=
2Γ (1− da − db)

k1−da−db
Fuaub (0) cos

nπ
2
(1− 2db)

o
+O

µ
1

k2−da−db

¶
=
2Γ (1− da − db)

k1−da−db
Fuaub (0) sin {πdb}+O

µ
1

k2−da−db

¶
,

which gives the stated result since Fuaub (0) = fuaub (0). ¥
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Proof of Theorem 2. From theorem 1, as k→∞

γab (k) =
2fuaub (0)Γ (1− da − db) sin (πdb)

k1−da−db
+O

µ
1

k2−da−db

¶
. (22)

Correspondingly, as k → −∞, we have, since γab (k) = γba (−k)

γab (k) =
2fubua (0)Γ (1− da − db) sin (πda)

|k|1−da−db
+O

µ
1

k2−da−db

¶
. (23)

Then,

1

n
D−1n E

©
SnS

0
n

ª
D−1n

=
1

n
D−1n E

Ã
nX
t=1

Xt

!Ã
nX
t=1

Xt

!0
D−1n =

1

n
D−1n

nX
t,s=1

¡
EXtX

0
s

¢
D−1n

=
1

n
D−1n

nX
t,s=1

Γxx (s− t)D−1n = D−1n

n−1X
h=−n+1

µ
1− |h|

n

¶
Γxx (h)D

−1
n

= D−1n

n−1X
h=−n+1

Γxx (h)D
−1
n − n−1D−1n

n−1X
h=−n+1

|h|Γxx (h)D−1n . (24)

For some L such that 1
L +

L
n2d
→ 0 as n→∞, we decompose the first sum in (24) as follows

D−1n

n−1X
h=−n+1

Γxx (h)D
−1
n = D−1n

"
L−1X
−L+1

Γxx (h) +
n−1X
L

Γxx (h) +
−LX
−n+1

Γxx (h)

#
D−1n

= D−1n

"
n−1X
L

Γxx (h) +
−LX
−n+1

Γxx (h)

#
D−1n + o (1) .

The ab’th element of this matrix is

1

nda+db

"
n−1X
L

γab (h) +
−LX
−n+1

γab (h)

#
+ o (1) =

1

nda+db

"
n−1X
L

γab (h) +
−LX
−n+1

γba (−h)
#
+ o (1)

=
1

nda+db

n−1X
L

{γab (h) + γba (h)}+ o (1)

=
1

nda+db

n−1X
L

∙
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

h1−da−db
+O

µ
1

h2−da−db

¶¸
+ o (1)



13

.

= 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
1

nda+db

nX
1

1

h1−da−db
+ o (1)

= 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
1

nda+db

Z n

1

dh

h1−da−db
+ o (1)

= 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
1

nda+db

∙
hda+db

da + db

¸n
1

+ o (1)

=
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

da + db
+ o (1) , (25)

by Euler summation. It follows that"
D−1n

n−1X
h=−n+1

Γxx (h)D
−1
n

#
ab

→ 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
da + db

.

Next consider the second sum in (24). The ab’th element is

1

n1+da+db

n−1X
h=−n+1

|h| γab (h)

=
1

n1+da+db

L−1X
h=−L+1

|h| γab (h) +
1

n1+da+db

n−1X
h=L

hγab (h) +
1

n1+da+db

−LX
−n+1

|h| γab (h)

=
1

n1+da+db

L−1X
h=−L+1

|h| γab (h) +
1

n1+da+db

n−1X
h=L

h {γab (h) + γba (h)}

=
1

n1+da+db

n−1X
h=L

h

½
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

h1−da−db
+O

µ
1

h2−da−db

¶¾
+ o (1)

=
1

n1+da+db

n−1X
h=1

½
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

h−da−db

¾
+ o (1)

= 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
1

n1+da+db

Z n

1
hda+dbdh+ o (1)

=
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

1 + da + db
+ o (1) , (26)

by Euler summation again.
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We now combine (25) and (26) in (24) giving, as n→∞,∙
1

n
D−1n E

©
SnS

0
n

ª
D−1n

¸
ab

=
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

da + db

− 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
1 + da + db

+ o (1)

=
2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}

(da + db) (1 + da + db)
+ o (1)

→ 2fuaub (0)Γ (1− da − db) {sin (πdb) + sin (πda)}
(da + db) (1 + da + db)

,

which corresponds to the stated result. ¥


