733 research outputs found

    Bilateral Avulsion Fracture

    Get PDF
    Download PD

    The Effects of Anthropogenic Sensory Pollution on Arthropod Diversity and Pollinator Behavior

    Get PDF
    Pollinators provide a key ecological function in terrestrial ecosystems, yet in recent years, they have encountered unprecedented declines, likely due to anthropogenic change. Light and noise pollution, which can interfere with the visual and auditory systems of animals that regulate daily behaviors, are important factors to consider when communities are encroached by human development. While many researchers have looked at how vertebrate species behaviorally react to human caused habitat degradation and sensory pollution, little is known about how invertebrates, including arthropod pollinators, are affected, and whether there is a negative cascading effect on the plants that they pollinate. This research investigates threats to arthropod biodiversity and pollination services from light pollution and noise pollution with field observations and experiments. This research is unique and is an important first step to understanding why arthropods and arthropod pollinators are in decline and will inform land managers in important conservation action

    Background Acoustics in Terrestrial Ecology

    Get PDF
    The way in which terrestrial organisms use the acoustic realm is fundamentally important and shapes behavior, populations, and communities, but how background acoustics, or noise, influence the patterns and processes in ecology is still relatively understudied. In this review, we summarize how background acoustics have traditionally been studied from the signaling perspective, discuss what is known from a receiver\u27s perspective, and explore what is known about population- and community-level responses to noise. We suggest that there are major gaps linking animal physiology and behavior in noise to fitness; that there is a limited understanding of variation in hearing within and across species, especially in the context of real-world acoustic conditions; and that many puzzling responses to noise could be clarified with a community-level lens that considers indirect effects. Failing to consider variation in acoustic conditions, and the many ways organisms use and interact via this environmental dimension, risks a limited understanding of natural systems

    Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater Sage-Grouse (Centrocercus urophasianus).

    Get PDF
    There is increasing evidence that individuals in many species avoid areas exposed to chronic anthropogenic noise, but the impact of noise on those who remain in these habitats is unclear. One potential impact is chronic physiological stress, which can affect disease resistance, survival and reproductive success. Previous studies have found evidence of elevated stress-related hormones (glucocorticoids) in wildlife exposed to human activities, but the impacts of noise alone are difficult to separate from confounding factors. Here we used an experimental playback study to isolate the impacts of noise from industrial activity (natural gas drilling and road noise) on glucocorticoid levels in greater sage-grouse (Centrocercus urophasianus), a species of conservation concern. We non-invasively measured immunoreactive corticosterone metabolites from fecal samples (FCMs) of males on both noise-treated and control leks (display grounds) in two breeding seasons. We found strong support for an impact of noise playback on stress levels, with 16.7% higher mean FCM levels in samples from noise leks compared with samples from paired control leks. Taken together with results from a previous study finding declines in male lek attendance in response to noise playbacks, these results suggest that chronic noise pollution can cause greater sage-grouse to avoid otherwise suitable habitat, and can cause elevated stress levels in the birds who remain in noisy areas

    The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows

    Get PDF
    Urban habitats present new ecological and evolutionary challenges for animals. Noise and infrastructure often change behavior and community composition, with potential physical costs such as decreased condition. However, the underlying mechanisms driving these patterns are virtually unknown. One potential driver of condition within a species is the diversity of the gut microbiome. Here, we investigate how the urban habitat affects the gut microbiome of White-crowned Sparrows (Zonotrichia leucophrys) males using spatial analyses of land cover (impervious, scrub, grass, and trees) at the regional level and territory level in urban San Francisco, CA and nearby rural Point Reyes, California. We hypothesized that urbanization of habitats affects gut microbial composition and diversity, potentially through direct effects on diet and/or indirect environmental effects. We measured gut microbial community diversity from 16s rRNA sequences amplified from cloacal swabs. We find that the urban and rural male gut microbiomes are significantly different, such that the urban gut microbiome is more diverse than the rural gut microbiome. This relationship may be due to more variable land cover types in urban habitats as compared to rural habitats, which are mainly composed of native scrub. We do not find support for regional impervious cover affecting the gut microbiome, but the more precise territory level analyses show that higher tree cover correlates with increased alpha diversity and impervious cover correlates with relative abundances of gut microbial taxa (Unifrac beta diversity). Although some studies show that gut diversity affects physiology, our measures of body condition do not indicate a strong relationship. Our results highlight how changes in the landscape may affect the gut microbiome of animals in an ever-urbanizing world, and provide a baseline for future studies of how anthropogenic change affects communities at multiple levels

    Diversity in lac Operon Regulation among Diverse Escherichia coli Isolates Depends on the Broader Genetic Background but Is Not Explained by Genetic Relatedness

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Transcription of bacterial genes is controlled by the coordinated action of cis- and trans-acting regulators. The activity and mode of action of these regulators can reflect different requirements for gene products in different environments. A well-studied example is the regulatory function that integrates the environmental availability of glucose and lactose to control the Escherichia coli lac operon. Most studies of lac operon regulation have focused on a few closely related strains. To determine the range of natural variation in lac regulatory function, we introduced a reporter construct into 23 diverse E. coli strains and measured expression with combinations of inducer concentrations. We found a wide range of regulatory functions. Several functions were similar to the one observed in a reference lab strain, whereas others depended weakly on the presence of cAMP. Some characteristics of the regulatory function were explained by the genetic relatedness of strains, indicating that differences varied on relatively short time scales. The regulatory characteristics explained by genetic relatedness were among those that best predicted the initial growth of strains following transition to a lactose environment, suggesting a role for selection. Finally, we transferred the lac operon, with the lacI regulatory gene, from five natural isolate strains into a reference lab strain. The regulatory function of these hybrid strains revealed the effect of local and global regulatory elements in controlling expression. Together, this work demonstrates that regulatory functions can be varied within a species and that there is variation within a species to best match a function to particular environments

    Pyrimidine salvage enzymes are essential for de novo biosynthesis of Deoxypyrimidine nucleotides in Trypanosoma brucei

    Get PDF
    © 2016 Leija et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The human pathogenic parasite Trypanosoma brucei possess both de novo and salvage routes for the biosynthesis of pyrimidine nucleotides. Consequently, they do not require salvageable pyrimidines for growth. Thymidine kinase (TK) catalyzes the formation of dTMP and dUMP and is one of several salvage enzymes that appear redundant to the de novo pathway. Surprisingly, we show through analysis of TK conditional null and RNAi cells that TK is essential for growth and for infectivity in a mouse model, and that a catalytically active enzyme is required for its function. Unlike humans, T. brucei and all other kinetoplastids lack dCMP deaminase (DCTD), which provides an alternative route to dUMP formation. Ectopic expression of human DCTD resulted in full rescue of the RNAi growth phenotype and allowed for selection of viable TK null cells. Metabolite profiling by LC-MS/MS revealed a buildup of deoxypyrimidine nucleosides in TK depleted cells. Knockout of cytidine deaminase (CDA), which converts deoxycytidine to deoxyuridine led to thymidine/deoxyuridine auxotrophy. These unexpected results suggested that T. brucei encodes an unidentified 5'-nucleotidase that converts deoxypyrimidine nucleotides to their corresponding nucleosides, leading to their dead-end buildup in TK depleted cells at the expense of dTTP pools. Bioinformatics analysis identified several potential candidate genes that could encode 5'-nucleotidase activity including an HD-domain protein that we show catalyzes dephosphorylation of deoxyribonucleotide 5'-monophosphates. We conclude that TK is essential for synthesis of thymine nucleotides regardless of whether the nucleoside precursors originate from the de novo pathway or through salvage. Reliance on TK in the absence of DCTD may be a shared vulnerability among trypanosomatids and may provide a unique opportunity to selectively target a diverse group of pathogenic single-celled eukaryotes with a single drug.This work was supported by National Institutes of Health (grants AI078962 and AI034432) to MAP (https://www.niaid.nih.gov) and (grant GM007062) to CL (https://www.nigms.nih. gov), the Welch Foundation (grant I-1257) to MAP and (grant I-1686) to JJK (http://www.welch1.org), and Fundac ̧ão para a Ciência e Tecnologia (FCT, Portugal) SFRH/BD/51286/2010 (http://www.fct.pt) to FRF.info:eu-repo/semantics/publishedVersio

    Analytic Inversion of Emission Lines of Arbitrary Optical Depth for the Structure of Supernova Ejecta

    Get PDF
    We derive a method for inverting emission line profiles formed in supernova ejecta. The derivation assumes spherical symmetry and homologous expansion (i.e., v(r)rv(r) \propto r), is analytic, and even takes account of occultation by a pseudo-photosphere. Previous inversion methods have been developed which are restricted to optically thin lines, but the particular case of homologous expansion permits an analytic result for lines of {\it arbitrary} optical depth. In fact, we show that the quantity that is generically retrieved is the run of line intensity IλI_\lambda with radius in the ejecta. This result is quite general, and so could be applied to resonance lines, recombination lines, etc. As a specific example, we show how to derive the run of (Sobolev) optical depth τλ\tau_\lambda with radius in the case of a pure resonance scattering emission line.Comment: 6 pages, no figures, to appear in Astrophysical Journal Letters, requires aaspp4.sty to late

    AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1

    Full text link
    Using data from the DEEP2 Galaxy Redshift Survey and HST/ACS imaging in the Extended Groth Strip, we select nearly 100 interacting galaxy systems including kinematic close pairs and morphologically identified merging galaxies. Spitzer MIPS 24 micron fluxes of these systems reflect the current dusty star formation activity, and at a fixed stellar mass (M_{*}) the median infrared luminosity (L_{IR}) among merging galaxies and close pairs of blue galaxies is twice (1.9 +/- 0.4) that of control pairs drawn from isolated blue galaxies. Enhancement declines with galaxy separation, being strongest in close pairs and mergers and weaker in wide pairs compared to the control sample. At z ~ 0.9, 7.1% +/- 4.3% of massive interacting galaxies (M_{*} > 2*10^{10} M_{solar}) are found to be ULIRGs, compared to 2.6% +/- 0.7% in the control sample. The large spread of IR luminosity to stellar mass ratio among interacting galaxies suggests that this enhancement may depend on the merger stage as well as other as yet unidentified factors (e.g., galaxy structure, mass ratio, orbital characteristics, presence of AGN or bar). The contribution of interacting systems to the total IR luminosity density is moderate (<= 36 %).Comment: 12 pages, 2 figures, 1 table, minor changes to match the proof version, accepted for publication in the ApJL AEGIS Special Issu
    corecore