539 research outputs found

    Unitarity and the Bethe-Salpeter Equation

    Full text link
    We investigate the relation between different three-dimensional reductions of the Bethe-Salpeter equation and the analytic structure of the resultant amplitudes in the energy plane. This correlation is studied for both the ϕ2σ\phi^2\sigma interaction Lagrangian and the πN\pi N system with ss-, uu-, and tt-channel pole diagrams as driving terms. We observe that the equal-time equation, which includes some of the three-body unitarity cuts, gives the best agreement with the Bethe-Salpeter result. This is followed by other 3-D approximations that have less of the analytic structure.Comment: 17 pages, 8 figures; RevTeX. Version accepted for publication in Phys. Rev.

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Regulation of WNT Signaling by VSX2 During Optic Vesicle Patterning in Human Induced Pluripotent Stem Cells

    Get PDF
    Few gene targets of Visual System Homeobox 2 (VSX2) have been identified despite its broad and critical role in the maintenance of neural retina (NR) fate during early retinogenesis. We performed VSX2 ChIP-seq and ChIP-PCR assays on early stage optic vesicle-like structures (OVs) derived from human iPS cells (hiPSCs), which highlighted WNT pathway genes as direct regulatory targets of VSX2. Examination of early NR patterning in hiPSC-OVs from a patient with a functional null mutation in VSX2 revealed mis-expression and upregulation of WNT pathway components and retinal pigmented epithelium (RPE) markers in comparison to control hiPSCOVs. Furthermore, pharmacological inhibition of WNT signaling rescued the early mutant phenotype, whereas augmentation of WNT signaling in control hiPSC-OVs phenocopied the mutant. These findings reveal an important role for VSX2 as a regulator of WNT signaling and suggest that VSX2 may act to maintain NR identity at the expense of RPE in part by direct repression of WNT pathway constituents

    Electronic structure, phase stability and chemical bonding in Th2_2Al and Th2_2AlH4_4

    Full text link
    We present the results of theoretical investigation on the electronic structure, bonding nature and ground state properties of Th2_2Al and Th2_2AlH4_4 using generalized-gradient-corrected first-principles full-potential density-functional calculations. Th2_2AlH4_4 has been reported to violate the "2 \AA rule" of H-H separation in hydrides. From our total energy as well as force-minimization calculations, we found a shortest H-H separation of 1.95 {\AA} in accordance with recent high resolution powder neutron diffraction experiments. When the Th2_2Al matrix is hydrogenated, the volume expansion is highly anisotropic, which is quite opposite to other hydrides having the same crystal structure. The bonding nature of these materials are analyzed from the density of states, crystal-orbital Hamiltonian population and valence-charge-density analyses. Our calculation predicts different nature of bonding for the H atoms along aa and cc. The strongest bonding in Th2_2AlH4_4 is between Th and H along cc which form dumb-bell shaped H-Th-H subunits. Due to this strong covalent interaction there is very small amount of electrons present between H atoms along cc which makes repulsive interaction between the H atoms smaller and this is the precise reason why the 2 {\AA} rule is violated. The large difference in the interatomic distances between the interstitial region where one can accommodate H in the acac and abab planes along with the strong covalent interaction between Th and H are the main reasons for highly anisotropic volume expansion on hydrogenation of Th2_2Al.Comment: 14 pages, 9 figure

    Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space

    Get PDF
    A quantitative test for the validity of the semi-classical approximation in gravity is given. The criterion proposed is that solutions to the semi-classical Einstein equations should be stable to linearized perturbations, in the sense that no gauge invariant perturbation should become unbounded in time. A self-consistent linear response analysis of these perturbations, based upon an invariant effective action principle, necessarily involves metric fluctuations about the mean semi-classical geometry, and brings in the two-point correlation function of the quantum energy-momentum tensor in a natural way. This linear response equation contains no state dependent divergences and requires no new renormalization counterterms beyond those required in the leading order semi-classical approximation. The general linear response criterion is applied to the specific example of a scalar field with arbitrary mass and curvature coupling in the vacuum state of Minkowski spacetime. The spectral representation of the vacuum polarization function is computed in n dimensional Minkowski spacetime, and used to show that the flat space solution to the semi-classical Einstein equations for n=4 is stable to all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083, with two additional sections and two new appendices giving a complete, explicit example of the semi-classical stability criterion proposed in the previous pape

    Noise induced transitions in semiclassical cosmology

    Get PDF
    A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a non local term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near zero scale factor (initial singularity) it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from "nothing" into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.Comment: LaTex, 33.tex pages, no figure

    The influence of localised size reorganisation on short-duration bidispersed granular flows

    Get PDF
    We investigate experimentally the runout resulting from the collapse of a granular column containing two particle species that differ in size only. The experimental configuration is strictly twodimensional (only one particle per width of the experimental tank) and we explore both the role of the initial arrangement and proportion of the two particle sizes in the column, using high-speed videography, and by determining the centres of mass of the big and small particles in the initial column and the final deposit. The duration of the experiment is sufficiently short that large-scale segregation does not occur, however, we find a clear dependence of runout on both initial mixture arrangement and proportion for all conditions. We investigated this observation through detailed analysis of the flow front motion, and identify a characteristic "stopping" phase when dissipation dominates, and we apply a shallow layer model at the flow front to show how the initial mixture arrangement and proportion influence the effective coefficient of friction during emplacement. We find that a bidispersed mixture can induce a larger friction on emplacement than a monodispersed mixture, and the highest coefficient of friction was found for a well-mixed initial arrangement of particles at the proportion that shows maximum horizontal spreading of the flow. These observations suggest that downwards percolation of fine particles takes place at the front of the collapsing column, and so localised size segregation processes at the flow front can control flow mobility. This effect is likely to be important in controlling the mobility of large geophysical flows that occur on finite time scales, and whose deposits typically show granular segregation at the front and edges but not throughout the entire deposit

    Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum.

    Get PDF
    The plasma membrane calcium extrusion mechanism, PMCA (plasma membrane calcium ATPase) isoform 2 is richly expressed in the brain and particularly the cerebellum. Whilst PMCA2 is known to interact with a variety of proteins to participate in important signalling events [Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca(2+) pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35 (Pt 5):919-922], its molecular interactions in brain synapse tissue are not well understood. An initial proteomics screen and a biochemical fractionation approach identified PMCA2 and potential partners at both pre- and post-synaptic sites in synapse-enriched brain tissue from rat. Reciprocal immunoprecipitation and GST pull-down approaches confirmed that PMCA2 interacts with the post-synaptic proteins PSD95 and the NMDA glutamate receptor subunits NR1 and NR2a, via its C-terminal PDZ (PSD95/Dlg/ZO-1) binding domain. Since PSD95 is a well-known partner for the NMDA receptor this raises the exciting possibility that all three interactions occur within the same post-synaptic signalling complex. At the pre-synapse, where PMCA2 was present in the pre-synapse web, reciprocal immunoprecipitation and GST pull-down approaches identified the pre-synaptic membrane protein syntaxin-1A, a member of the SNARE complex, as a potential partner for PMCA2. Both PSD95-PMCA2 and syntaxin-1A-PMCA2 interactions were also detected in the molecular and granule cell layers of rat cerebellar sagittal slices by immunohistochemistry. These specific molecular interactions at cerebellar synapses may allow PMCA2 to closely control local calcium dynamics as part of pre- and post-synaptic signalling complexes

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table
    corecore