11 research outputs found

    Neural mechanisms of rapid sensitivity to syntactic anomaly

    Get PDF
    Recent psycholinguistic models hypothesize that anticipatory processing can speed the response to linguistic input during language comprehension by pre-activating representations necessary for word recognition. We investigated the neurocognitive mechanisms of anticipatory processing by recording event-related brain responses (ERPs) to syntactically anomalous (The thief was caught by for police) and well-formed (e.g., The thief was caught by the police) sentences. One group of participants saw anomalies elicited by the same word in every instance (e.g., for; low-variability stimuli), providing high affordances for predictions about the word-form appearing in the critical position. A second group saw anomalies elicited by seven different prepositions (at, of, on, for, from, over, with; high-variability stimuli) across the study, creating a more difficult prediction task. Syntactic category anomalies enhanced the occipital-temporal N170 component of the ERP, indicating rapid sensitivity—within 200 ms of word onset—to syntactic anomaly. For low-variability but not the high-variability stimuli, syntactic anomaly also enhanced the earlier occipital-temporal P1 component, around 130 ms after word-onset, indicating that affordances for prediction engendered earlier sensitivity to syntactic anomaly. Independent components analysis revealed three sources within the ERP signal whose functional dynamics were consistent with predictive processing and early responses to syntactic anomaly. Distributed neural source modeling (sLORETA) of these early-active sources produced a candidate network for early responses to words during reading in the right posterior-occipital, left occipital-temporal, and medial parietal cortex

    Oscillatory decoupling differentiates auditory encoding deficits in children with listening problems

    No full text
    Objective: We sought to examine whether oscillatory EEG responses to a speech stimulus in both quiet and noise were different in children with listening problems than in children with normal hearing. Methods: We employed a high-resolution spectral–temporal analysis of the cortical auditory evoked potential in response to a 150 ms speech sound /da/ in quiet and 3 dB SNR in 21 typically developing children (mean age = 10.7 years, standard deviation = 1.7) and 44 children with reported listening problems (LP) with absence of hearing loss (mean age = 10.3 years, standard deviation = 1.6). Children with LP were assessed for auditory processing disorder (APD) by which 24 children had APD, and 20 children did not. Peak latencies, magnitudes, and frequencies were compared between these groups. Results: Children with LP had frequency shifts in the theta, and alpha bands (p < 0.05), and children with LP + APD had additional frequency (p < 0.01) and latency shifts (p < 0.05) in the upper beta and in the lower gamma bands. Conclusions: These results provide evidence for differences in higher level modulatory processing in children with LP, and that APD is driven by differences in early auditory encoding. Significance: These findings may better guide future research toward improving the differential diagnosis and treatment of listening problems in this population of children.11 page(s

    The influence of a sensitive period for auditory-visual integration in children with cochlear implants

    No full text
    PURPOSE: Children who experience long periods of auditory deprivation are susceptible to large-scale reorganization of auditory cortical areas responsible for the perception of speech and language. One consequence of this reorganization is that integration of combined auditory and visual information may be altered after hearing is restored with a cochlear implant. Our goal was to investigate the effects of reorganization in a task that examines performance during multisensory integration. METHODS: Reaction times to the detection of basic auditory (A), visual (V), and combined auditory-visual (AV) stimuli were examined in a group of normally hearing children, and in two groups of cochlear implanted children: (1) early implanted children in whom cortical auditory evoked potentials (CAEPs) fell within normal developmental limits, and (2) late implanted children in whom CAEPs were outside of normal developmental limits. Miller\u27s test of the race model inequality was performed for each group in order to examine the effects of auditory deprivation on multisensory integration abilities after implantation. RESULTS: Results revealed a significant violation of the race model inequality in the normally hearing and early implanted children, but not in the group of late implanted children. CONCLUSION: These results suggest that coactivation to multi-modal sensory input cannot explain the decreased reaction times to multi-modal input in late implanted children. These results are discussed in regards to current models for coactivation to redundant sensory information

    Phototrophic Anaerobic Lagoons as Affected by Copper and Zinc in Swine Diets

    Get PDF
    Odor emissions from anaerobic lagoons containing large populations of phototrophic bacteria are usually minimal. This study was conducted to determine whether copper (123 ppm) and zinc (2,310 ppm) in diets fed to weanling pigs for therapeutic purposes affect phototrophic conditions within lagoons. Column reactors containing 47 L of swine lagoon sludge and supernatant were used to represent lagoons. The reactors were placed in an environmental chamber maintained at 24° C. Copper, zinc, and control manure were added to the reactors at a volatile solids loading rate of 128 gvs m–3 da–1 using a hydraulic retention time of 32.5 days. Bacteriochlorophyll a, copper, reduction-oxidation potential, salinity, sulfate, sulfide, and zinc were then measured for at least 99 days. Sulfide, total copper and total zinc were the only parameters to be significantly impacted. The copper and zinc concentrations in the sludge increased but that of supernatant in the individual reactors changed little during the study period. However, the addition of dietary copper significantly increased the concentrations of sulfides in the supernatant, creating a condition that appeared toxic to phototrophic bacteria. In contrast, a decrease in sulfide concentration resulted from the addition of dietary zinc, resulting in an environment that may have been favorable to phototrophic bacteria. Thus, to minimize potential odor concerns, zinc rather than copper may be the best choice as a dietary supplement for weanling pigs
    corecore