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Abstract 

Background: Oddball paradigms are frequently used to study auditory discrimination by comparing event‑related 
potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous 
research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for 
examining auditory processes in young children and infants across various sleep and attention states. The extent 
to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely 
unknown, especially in infants that have not yet acquired speech and language.

Results: Mismatch responses for three contrasts (non‑speech, vowel, and consonant) were computed as a spectral‑tempo‑
ral probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately 
following an onset gamma response (30–50 Hz), the emergence of a beta oscillation (12–30 Hz) was temporally coupled 
with a lower frequency theta oscillation (2–8 Hz). The spectral‑temporal probability of this coupling effect relative to a subse‑
quent theta modulation corresponds with discrimination difficulty for non‑speech, vowel, and consonant contrast features.

Discussion: The theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of 
surprise. These results support the notion that auditory discrimination is driven by the development of brain networks 
for predictive processing, and can be measured in infants during sleep. The results presented here have implications 
for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of 
single‑subject and single‑trial classification in a clinically useful context.

Conclusion: An infant’s brain is processing information about the environment and performing computations, 
even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for 
language‑learning. Results from this study suggest that brain responses to deviant sounds in an oddball paradigm 
follow a cascade of oscillatory modulations. This cascade begins with a gamma response that later emerges as a beta 
synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta 
modulation. The difference in frequency and timing of the theta modulations appears to reflect a measure of surprise. 
These insights into the neurophysiological mechanisms of auditory discrimination provide a basis for exploring the 
clinically utility of the MMRTF and other auditory oddball responses.
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Background
Speech discrimination inherently requires a comparison 
of two or more different sounds, which, in EEG studies, 

is typically assessed by some variant of an oddball 
response task [cf., 1, 2], and elicits an event-related 
potential (ERP) in the EEG signal. An oddball task 
includes the repeated presentation of two sounds1 over 
many trials with some associated probability of which 

1 Such tasks need not be limited to only two sounds; however, we limit the 
discussion here to a traditional oddball paradigm of two contrasting stimuli.
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sound is selected during a trial. The sound with the high-
est probability of selection (i.e., the sound heard most 
often) is referred to as the “standard” or “frequent” stim-
ulus, while the sound with the lowest probability is 
called the “deviant” or “rare” stimulus. If the task is 
meant to assess pre-perceptual processing, then the par-
ticipant is usually asked to ignore the sounds and/or to 
attend to a separate task. Because these oddball 
responses can be assessed in the absence of a behavioral 
component, such a task might provide a solution to 
assessing discrimination in young infants.

Pre-perceptual oddball tasks are presumed to elicit an 
automatic, exogenous change-detection response [3]. For 
example, the mismatch negativity or mismatch response2 
(MMR/N) has been well defined in adults [4–6] and chil-
dren [7–10], and has been correlated with behavioral dis-
crimination [11, 12]. As the MMR/N is elicited passively 
and in the absence of directed attention [1, 13, 14], it has 
considerable potential as a measure of early information 
processing in infants [15]. Although considered a pre-
attentive response, there has been debate on the modula-
tory effects of attention on the response [16]. Studies 
with adults attempt to control attention by having partic-
ipants attend a visual stimulus during testing, but con-
trolling attention in awake/alert infants may be more 
problematic. Conversely, studies in infants report stabil-
ity in key ERP parameters (latency, amplitude, etc.) across 
various stages of alertness, including sleep [9, 17, 18]. 
Testing during sleep not only reduces the potential influ-
ence of attention effects, it has the added benefit of 
reducing data loss associated with movement artifacts.

During sleep, EEG in young children contains more 
low frequency power in the delta (2–4  Hz) and theta 
(4–8  Hz) frequency bands compared to older children 
and adults [19]. However, the exact contributions of 
these frequency bands also vary by sleep stage [20], and 
some infants (~35%) may exhibit transient theta-alpha 
(8–12 Hz) bursts in the EEG [21]. Despite such variance 
in sleep-stage contributions, auditory ERPs reveal typical 
auditory processing patterns during sleep and through 
the sleep-wake cycle [20]. However, detecting ERP differ-
ences in higher frequency bands, such as beta (12–30 Hz) 
and gamma (30–50  Hz) can be challenging given the 
smaller contributions to the EEG and unknown variabil-
ity at those higher frequencies.

Several studies have now demonstrated theta amplitude 
modulations (AM) for frontal MMR/N components con-
current with theta phase modulations (PM) for temporal 
MMR/N components (i.e., as observed over temporal 

2 While traditionally referred to as the mismatch negativity (MMN), infants 
exhibit a difference response with positive orientation, which is reflected by 
the more inclusive use of the mismatch response (MMR) to describe these 
responses.

cortex) when detecting a deviant stimulus [22–24]. These 
theta modulations also appear to follow a series of mod-
ulations in the gamma band (including high gamma, 
60–300  Hz) and may be related to inhibitory changes 
in the alpha band [25]. Taken together, these previous 
results suggest a dynamical relationship between differ-
ent neurophysiological mechanisms that contribute to 
the detection of a deviant sound. In the present study, we 
examine two hypotheses: (1) spectral-temporal features 
of auditory discrimination can be extracted from a “sin-
gle-channel” montage that is ideal for clinical application 
in infants, and (2) these spectral-temporal features reflect 
the degree of difficulty for discriminating two sounds.

Methods
Participants
Participants for this study included 24 typically devel-
oping infants (10 female, 14 male) aged 1.0–3.9 months 
(mean  =  2.6, SD  =  0.82). All infants had passed their 
newborn hearing screening assessed by a click evoked 
auditory brainstem response (ABR) screening protocol. 
The informed consent form was fully executed prior to 
any study related activity, as approved by the Colorado 
Multiple Institutional Review Board.

Stimuli
Three stimulus pairs, or “contrasts” were presented in 
separate blocks using a standard auditory oddball para-
digm with an inter-stimulus interval (ISI) of 1200  ms. 
This long interval increases the likelihood of identifying 
an auditory evoked response in young children [26, 27]. 
Stimuli were presented in pseudo-random order at a ratio 
of 85% standard to 15% deviant, with the constraint that 
deviant stimuli could not appear in succession. Approxi-
mately 600 trials (~510 standard, ~90 deviant) were col-
lected for each block. All stimuli were normalized for 
RMS amplitude and presented from a single speaker in 
the sound field at a level of 70 dBA measured at the loca-
tion of the infant’s head. All speech stimuli were edited 
to durations of 500  ms by replicating or cutting vowel 
cycles without disrupting the natural onset and offset of 
the sounds.

We chose three contrasts that represent increasing lev-
els of difficulty and developmental emergence for audi-
tory discrimination in young children; these include a 
non-speech contrast, a vowel contrast, and a consonant 
contrast (Fig. 1). The order of contrast presentation was 
randomly selected prior to each recording session. The 
non-speech contrast is considered the least difficult to 
discriminate in young children, and consisted of a 500 Hz 
pure tone (standard) and a white-noise burst (deviant) 
each 500  ms in duration with 30  ms linear ramping at 
both onset and offset. The vowel contrast consisted of 
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two naturally produced vowel sounds /a/ (“ah”) and /i/ 
(“ee”) as the standard and deviant stimuli, respectively. 
This vowel contrast is considered more difficult to dis-
criminate than the non-speech contrast, and is one of the 
earliest to emerge in behavioral discrimination tasks [28–
30]. The consonant contrast consisted of two naturally 
spoken consonant–vowel (CV) sounds /ba/ (“bah”) and /
da/ (“dah”) as the standard and deviant stimuli, respec-
tively. This contrast is considered the most difficult of the 
three and tends to emerge later in behavioral discrimina-
tion tasks than the vowel contrast. The non-speech and 
vowel contrasts were completed for all 24 infants, but the 
consonant contrast was only completed for 17 of the 24 
infants.

EEG procedure
Infants were placed in a comfortable bassinet or in a 
parent’s lap in a quiet, dim room to induce or aid sleep-
ing during the test session. The rocker’s motion was not 
active during the EEG recordings, but was active during 
EEG preparation or during breaks if the infant appeared 
to be waking. Eleven Ag/AgCl electrodes were placed on 
the scalp according to the international 10–20 system 
(F5, Fz, F6, C5, Cz, C6, P5, Pz, P6, M1, and M2) and were 
referenced to the nasion. An additional bi-polar record-
ing channel was placed on the lateral canthus of the 
right eye and referenced to the superior orbit to moni-
tor eye movement and waking. Continuous EEG was 
recorded with a sampling rate of 1000  Hz and filtered 
from DC-100  Hz during each experimental block using 
a Synamps2 EEG amplifier (Compumedics-Neuroscan, 
Charlotte, NC).

EEG signal processing
All signal processing was conducted in Matlab R2015b 
(Mathworks, Natick, MA) using the Statistics toolbox 
with custom tools and the EEGLAB toolbox [31]. Prior 
to analysis of the experimental trials, the EEG data were 
filtered from 2 to 50 Hz (zero-phase, FIR, 24 dB/octave). 
This frequency range includes frequencies associated 
with early sensory and perceptual evoked potentials and 
with a high-pass filter above the range of the slow-wave 
activity during sleep. During the EEG recordings, suf-
ficient EEG was captured before and after each block so 
that evoked responses were not distorted by the filter 
edges. Each channel (excluding the eye channel) was then 
re-referenced to the common average of all 11 data chan-
nels. Each contrast block was segmented into epochs 
from −500 to 1500 ms around each stimulus onset, and 
baseline corrected to the pre-stimulus interval. Trials 
with activity greater than 2.5 standard deviations from 

Fig. 1 Time‑amplitude waveforms (upper plots) and time–frequency 
spectrograms (lower plots) for each stimulus. Stimuli are grouped by 
contrast condition: a non‑speech (noise‑tone), b vowel (/i/–/a/), and 
c consonant (/da/–/ba/). The time–amplitude waveforms are plotted 
in blue for the standard stimuli (tone, /a/, and /ba/) and in red for the 
deviant stimuli (noise, /i/, and /da/)
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the mean of the joint-probability distribution of trial 
amplitudes at each channel were considered as contain-
ing artifacts and were rejected from further analysis.

Channel selection
The first goal of this experiment was to determine an 
optimal recording montage for routine clinical appli-
cation. We performed a spatial principal components 
analysis (PCA) on the bootstrapped difference estimate 
(n  =  1001 bootstraps performed individually for each 
channel) between all standard and deviant trials. Dif-
ference estimates for each subject were normalized and 
concatenated for a group-level PCA. Components were 
sorted in descending order by the percentage of vari-
ance accounted for (pvaf ) in the total data. The top com-
ponents accounting for a cumulative variance of at least 
90% were projected onto the channel space (Fig. 2a), and 
relative magnitudes were then computed as the sum of 
all trials. This results in a set of “loadings” for each EEG 
channel (Fig.  2b). Results of this analysis revealed three 
electrodes with consistently high loadings in all 24 par-
ticipants: Cz, M1, and M2. Further, the loadings for each 
of the mastoid channels were negative while the more 
superior channels had positive loadings. This reflects the 
polarity inversion of the auditory dipole being above the 
axial plane of the mastoid electrodes and below the axial 
plane of the superior electrodes, and confirms the stand-
ard practice of recording auditory ERPs from Cz refer-
enced to the mastoids. Taken together, we determined 
that Cz, referenced to linked mastoids (M1 + M2), would 
optimize differences in the experimental paradigm. 

Therefore, the continuous data were re-referenced to the 
linked mastoids, and only the Cz channel was retained 
for further analysis.

Feature extraction
The second and primary goal of this experiment was to 
examine the spectral-temporal features of the mismatch 
response (MMR) in infants during sleep. We hypoth-
esized that exogenous auditory processing during sleep 
would occur in separable EEG frequency bands, and 
that spectral-temporal features in these bands would 
reveal responses that indicate the detection of a devi-
ant stimulus [15]. Although we ultimately seek to define 
such features for individuals, we focus this analysis on 
group-level effects to better understand the general 
processes underlying the MMR. To this end, we imple-
mented a modified multi-dimensional scaling (MDS) of 
the time–frequency transformed EEG trials [32]. This 
analysis borrows from the DISTATIS method for the 
analysis of multiple distance matrices [33, 34]; where, 
here, distances refer to estimated differences in the 
deviant and standard responses in the time–frequency 
domain.

Pre‑processing and time–frequency transformation
Each experimental block (i.e., contrast) from each sub-
ject was processed separately, and was defined as a 
2-dimensional matrix of EEG voltages with size [I ×  J], 
where I is the number of trials and J is the number of 
time points in each trial. Each block was centered and 
whitened along the Ith dimension via PCA, retaining 

Fig. 2 Mean spatial PCA results; a channel activations were computed by projecting the selected eigenvectors onto the original channel space by 
multiplying the eigenvectors with the original input data (bootstrapped differences), and b channel loadings were computed as the sum of the 
mean of the squared, retained eigenvectors for each of 11 scalp electrodes. Electrodes Cz, M1, and M2, which have the largest loadings in opposite 
polarity, are shown with thicker lines; line color of the activation in a corresponds with bar color in b
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all eigenvectors explaining at least 0.01% of the total 
variance. The continuous wavelet transform (CWT) 
was applied separately to each whitened trial using a 
6-cycle Morlet wavelet with 128 log-spaced scales and 
with center frequencies from 1.94 to 48.40  Hz. The 
CWT results in a complex, 3-dimensional tensor of size 
[I × J × K], where K is the number of scales (K = 128) in 
the transform, and each point includes both a real and 
imaginary component. After transformation, the time 
window for each trial was truncated to a range of −100 
to 700 ms around the stimulus onset, and the pre-stimu-
lus mean (−100 to 0 ms) was then subtracted from each 
trial. The time window truncation ensures that all time–
frequency results are outside of the cone-of-influence; 
that is, that the data are not susceptible to edge artifacts. 
Trials with total squared magnitudes greater than 2.5 
standard deviations from the mean were then rejected 
from the block.

Computing the MMRTF
The probabilistic time–frequency mismatch response 
(MMRTF) was defined as a probability of the complex 
magnitude of the estimated mean of the deviant (D) 
minus standard (S) trials being greater than zero:

The estimated mean (D minus S bar) was computed by 
a bootstrap difference procedure (n-boots =  1001) that 
estimates both the mean difference and the probability 
of a difference being greater than 0 (i.e., deviant ≠ stand-
ard). This method borrows from and extends the meth-
ods described for the integrated mismatch negativity 
(MMNi) by Ponton et  al. [35]. The estimated mean, M, 
is computed by randomly selecting one deviant trial and 
one standard trial (with replacement) during each boot-
strap iteration and taking the difference, and is computed 
as:

where n is the number of bootstraps (1001), drd is a ran-
domly selected deviant trial, and srs is a randomly selected 
standard trial. The term, ‖‖2, indicates the squared com-
plex modulus of the mean difference response. The esti-
mated mean error, E, is computed by subtraction of any 
two randomly selected trials without regard to type (i.e., 
ignoring standard or deviant):

(1)MMRTF

def= P
((
D − S

)
> 0

)

(2)M =

∥∥∥∥∥
1

n

n∑

1

drd − srs

∥∥∥∥∥

2

(3)E =
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1

n

n∑

1

tra − trb
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2

where tra is any random trial from the entire block and 
trb is also any random trial from the entire block. The two 
results, M and E, are each real matrices of size [K ×  J], 
where J is the number of time points and K is the number 
of scales. To estimate the probability of a difference, M 
and E were vector normalized across scales, such that the 
squared sum of all points was equal to one for each scale:

where k is the Kth scale, j is the the Jth point, and MM 
and EE are the normalized means estimates. Therefore, 
the denominator term reads as the square root of the 
sum of all squared points in both MM and EE for scale k. 
This scale normalization has the effect that all difference 
points in the time–frequency plane are equated for the 
energy differences at each scale (e.g., low frequencies nat-
urally have more power over time than higher frequen-
cies). The joint cumulative density function (CDF) for all 
points in both MM and EE was then computed via kernel 
density estimation with automatic bandwidth selection 
[36] which we denote as:

Finally, the probability function for D − S is defined by 
replacing values in MM with the probability of that value 
from C:

Therefore, Eq.  1, which defines the MMRTF, is in turn 
defined by the joint probability of the true estimation 
(MM) and the error estimation (EE), and has a size of 
[K × J].

Group‑level analysis
The aim of the group-level analysis was to extract and iden-
tify the spectral-temporal features that best explain differ-
ences between deviant and standard trials, and that may 
differentiate variances attributed to contrast difficulty. To 
achieve this aim, the MMRTF results from each subject and 
contrast were treated as independent “studies” in a modi-
fied multi-dimensional scaling (MDS) analysis [32, 33].

Spectral and temporal cross‑products matrices
Each MMRTF was treated as a separate distance table and 
transformed into two cross-products matrices (as in MDS) 
for the spectral and temporal dimensions, respectively:

(4)
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Mk√∑J
j=1M

2
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2
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(5)
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Ek√∑J
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j,k +
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j=1 E

2
j,k

(6)C = CDF(MM∪EE)

(7)P
((
D − S

)
> 0

) def= MM → C
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where CPF is the cross-product matrix for the spectral 
(frequency) representation and CPT represents the tem-
poral (time) representation. The superscript, T, denotes 
the transpose.3 The centering matrix for each CP was 
defined as

where I is the identity matrix for CP with a size of 
[n × n], and where n is equal to the size of the dimension 
in CP (i.e., n is the number of scales represented in CPF 
or the number of points represented in CPT). The term l 
mT represents the “mass” contribution for each point in 
CP, where l is a vector of ones with a size of [n × 1] and 
m is mass vector of size [n × 1] and whose sum is equal 
to 1. We set each element of the mass vector to be equal, 
so each value of m was equal to 1/n. The superscript, T, 
denotes the transpose of m. The centering matrix was 
then applied to each CP as:

where the subscripts F and T denote the spectral and 
temporal domains, respectively, and the superscript T 
denotes the transpose. Finally, each CP matrix is normal-
ized by its first eigenvalue (λ1) and denoted by the symbol 
S:

Joint DISTATIS
The goal of the modified DISTATIS analysis was to iden-
tify a set of weights, denoted W, which define the best 
latent representation of the MMRTF. In our case, we have 
two separated dimensions (spectral and temporal) repre-
sented as normalized cross-products matrices (SF and ST) 
for each MMRTF. We therefore define two sets of weights, 
WF and WT, for each dimension. Each set of weights 
was computed via eigendecomposition of a compromise 
matrix, C, for each dimension. The compromise matrix 
was computed as a weighted mean of all S matrices of 

(8)CPF = MMRTF ∗MMR
T
TF

(9)CPT = MMR
T
TF ∗MMRTF

3 Note that for all equations a superscripted “T” refers to the transpose of a 
matrix or vector, whereas the subscripted “T” refers to the temporal dimen-
sion of the data.

(10)� = I− lm
T
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1

2
�FCPF�

T
F
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1

2
�TCPT�

T
T

(13)SF = �
1−1
F × C̃PF

(14)ST = �
1−1
T × C̃PTT

the dimension. The mean was weighted in that separate 
means were first computed for each contrast condition 
(non-speech, vowel, and consonant), and the final com-
promise was computed as the mean of the individual 
condition compromises. Therefore, the condition com-
promise matrices were defined as:

where the superscript d refers to members of the contrast 
condition, and N is the number of members in that condi-
tion. In our case, N was equal to 24 for the non-speech and 
vowel contrasts, and 17 for the consonant contrasts. The 
final compromise for each dimension was computed as:

where D is the number of contrasts (D = 3) and d refers 
to the condition compromise matrices. That is, each final 
compromise is simply the mean of the condition com-
promises. Eigendecomposition of the final compromise 
matrices result in a set of eigenvectors, w, and a corre-
sponding set of eigenvalues, λ for each compromise. The 
eigenvalues can be used to determine the percentage of 
variance accounted for (pvaf) by each eigenvector (as in 
singular value decomposition), where

The final weights for each dimension were selected by 
applying a threshold of 0.01, such that only those eigen-
vectors explaining at least 1% of the total variance were 
retained. The retained eigenvectors were normalized 
such that the sum of the squared values was equal to one 
for each vector:
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N
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where U and V refer to the number of retained eigenvec-
tors in F and T, respectively; and W denotes the final set 
of weights for the subscripted dimension. The first eigen-
value, λ1, for each dimension was used to compute the 
relative contribution (rc) of each dimension to explaining 
the total variance of the MMRTF:

Data projection
Having identified a set of weights for each dimension 
we assessed the contribution of each MMRTF to a joint 
compromise projection (P) of the spectral and temporal 
dimensions, and each MMRTF member to its respective 
condition compromise. In this way, we represent P as a 
weighted sum of the MMRTF dimension after a whitening 
transform by the weights, W, as follows:

where p(MMRTF ) refers to the projection of the MMRTF 
into the dimension’s compromise space (via whitening). 
It is important to note that each individual MMRTF was 
whitened by a set of weights computed from the group-
level analysis. The joint projected compromise was then 
computed as:

where * denotes dot multiplication of each projection 
point with the dimension’s relative contribution, rc, from 
Eqs. 22 and 23. The superscript T refers to the transpose.

After projecting each MMRTF, the condition-level com-
promise was computed as the mean of all members in the 
contrast condition:

where M is the number of MMRTF responses in the con-
trast condition, d (M = 24 for non-speech and vowel con-
trasts, and M =  17 for the consonant contrast). Finally, 
the group-level joint compromise, G, was computed as 
the mean of the condition-level compromise projections:

(22)rcF =
�
1
F

�
1
F + �

1
T

(23)rcT =
�
1
T

�
1
F + �

1
T

(24)pF (MMRTF ) = WF ×W
T
F ×MMRTF

(25)pT (MMRTF ) = WT ×W
T
T ×MMR

T
TF

(26)

P = (pF (MMRTF ) ∗ rcF )+ (pT (MMRTF ) ∗ rcT )T

(27)g
d =

1

M

M∑

m=1

P
d
m

(28)G =
1

D

D∑

d=1

gd

where D is the number of conditions (D = 3). The values 
in both G and g are normalized values between 0 and 1, 
which represent a relative probability (RP) of a difference 
response for each time–frequency point in the plane (i.e., 
relative to each other point in the plane).

Quasi‑likelihood estimation
In order to quantify the likelihood that an RP value is 
significant on average, we derived a pseudo M-estima-
tor from the joint compromise matrices. M-estimators 
define a broad class of statistical estimators that mini-
mize functions of the data (e.g., least-squares estimation, 
and maximum likelihood estimation). In this case, each 
MMRTF is defined as a probability function from Eq.  1, 
and the p(MMRTF ) projections were computed by a 
PCA-based whitening function resulting in a normalized 
relative probability. Because PCA inherently minimizes 
these functions, we interpret the joint compromise as 
the “best representation” of this minimization. However, 
because we are combining more than one “best represen-
tation” (i.e., the weighted sum of two minimized func-
tions over two separate dimensions), and each of these 
representations can contain more than two vectors (i.e., 
we allow each minimization function to exist in a multi-
dimensional space), the representations do not satisfy all 
properties of a robust M-estimator. Further, combining 
the dimensions requires projecting the minimized data 
into an inflated, three-dimensional space with unit-less 
values, which can make interpretation difficult.

To resolve this issue of interpretation, we mapped the 
inflated projection, G, onto a probability function of G, 
derived from the three condition compromise projections. 
We first define a minimum bound in the time–frequency 
plane as the maximum value for each time–frequency 
point from each of the three compromise matrices:

where B represents the minimum bound, and the max 
term indicates that each time–frequency point ij in B is 
defined by the maximum value from each of the three 
condition compromise matrices, where the number of 
conditions is denoted by D and each condition in the set 
is denoted by d. The likelihood is then defined as

where qLE refers to a quasi-likelihood estimate, and takes 
on a value between 0 and 1, and CDF(B)2 is the squared 
cumulative density function of the minimum bound, B, 
as computed by kernel density estimation with auto-
matic bandwidth selection [36]. We interpret the qLE as 
the likelihood that an observation in any joint projected 

(29)Bij
def= max

ij∈D
g
d
ij

(30)qLE
def= G → CDF(B)2
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RP value represents a true difference between the devi-
ant and standard responses relative to other observations 
in the time–frequency plane. The qLE is a single [K × J] 
matrix, which we essentially treat as a likelihood map 
of the relative probabilities for these experimental con-
ditions; that is, it tells us where in the time–frequency 
plane we are most likely to observe a difference response 
for any of the three tested contrasts.

Given that the qLE represents a probability function, we 
sought to identify a threshold that can be used for feature 
extraction and group-level comparisons. Based on pilot 
analyses of these data, we found that a qLE threshold of 
0.8 provided enough headroom to compare differences 
between extracted features, and was low enough to reveal 
consistently similar features between all participants. We 
suspect that this threshold may vary for different experi-
mental procedures or populations. For our purposes, we 
applied a qLE threshold of 0.8 to each MMRTF result. It 
is certainly possible that some features of interest may be 
overlooked with this threshold, however, results of this 
experiment provide some confirmation that this approach 
reveals consistent features. Future studies using a vari-
ety of experimental manipulations will be needed to fully 
resolve the optimal thresholding procedure.

Results
Group‑level joint compromise, G
The group-level joint compromise is shown in Fig.  3. To 
identify the spectral-temporal features, we set a threshold 
on the qLE at 0.8, which reveals three general features of 
interest in the time–frequency plane. The first prominent 
feature is a burst of activity that begins in the theta band 
and sweeps downward into the delta band over time. This 
sweeping burst has two centroids, or peaks, at the begin-
ning and end of the downward sweep. The first centroid 
appears at 4.7 Hz with a peak latency of 66 ms after stimulus 
onset, and the second centroid appears at 2.2 Hz with a peak 
latency of 183  ms. The second feature appears as another 
downward sweep with slightly higher frequencies and later 
latencies than the first feature. As before, two centroids 
define the beginning and end of this sweep with the first 
centroid at 6.2 Hz with a peak latency of 215 ms and the sec-
ond centroid at 2.7 Hz with a peak latency of 526 ms. These 
two features are denoted as theta-1 and theta-2. These theta 
responses correspond to the temporal phase modulated 
(PM) theta component (theta-1) and the frontal amplitude 
modulated (AM) theta component (theta-2) [24, 37, 38].

The third feature in the compromise appears as a large 
cloudy region spanning the beta (12–30 Hz) and gamma 
(30–50  Hz) bands. The temporal distribution of this 
gamma-beta cloud also appears to align with the tempo-
ral distribution of the theta-1 response, described above. 
This alignment is confirmed by comparing the temporal 

distributions of the gamma-beta and theta-1 responses 
for each condition (see Fig. 5 and “Condition-level joint 
compromises, gd” section, below). Such alignment cor-
roborates evidence for a cross-frequency coupling (CFC) 
effect for information binding [39, 40].

Condition‑level joint compromises, gd

The condition-level joint projections are shown in Fig. 4. 
The three features (theta-1, theta-2, and beta–gamma) of 
the group-level compromise are apparent in each of the 
condition-level projections, but with some notable dif-
ferences upon visual inspection. For example, the theta-1 
power appears to peak with a higher frequency and ear-
lier latency for the non-speech and vowel contrasts com-
pared to the consonant contrast.

The beta–gamma feature in the vowel contrast appears 
to be sparser and with less power than the other con-
trasts. There also appears to be an overall latency shift 
between the three features such that the non-speech con-
trast is earliest, followed by the vowel contrast, and then 
the consonant contrast. We sought to quantify these fea-
ture differences by comparing the centroids of each fea-
ture across contrast conditions.

Fig. 3 The projected MMRTF compromise (a) and extracted com‑
promise features (b). The projected MMRTF compromise is shown 
with time in milliseconds along the abscissa, and frequency in Hz 
along the ordinate. The relative probability (RP) for the compromise 
is displayed as a heat map defined by the colorbar, which has been 
thresholded at qLE ≥ 0.8 in b to reveal the three features: beta–
gamma, theta‑1, and theta‑2
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We defined condition-feature centroids as the joint 
maximum of the temporal and spectral distributions 
for each feature. To derive these distributions, we cre-
ated separate two-dimensional masks for each of the 
three features defined by qLE ≥  0.8. First, a mask H 
was created from the qLE values as:

Separate masks were then created for each feature (d) 
by setting only those values bound within the feature 
to 1. Each feature mask (hd) was then multiplied with 

(31)H =
{
0, qLE < 0.8
1, qLE ≥ 0.8

each condition-level projection (gd), and the temporal 
(subscripted T) and spectral (subscripted F) distribu-
tions of the feature were then computed as the mean 
across the respective dimension:

where y denotes the mean RP distribution for the sub-
scripted dimension and superscripted feature. Condi-
tion-feature distributions are shown in Figs.  5 and 6. 
Interestingly, the temporal distributions for the theta-1 
and beta–gamma features are nearly identical in each 
of the conditions, which further supports a CFC effect 
between the theta-1 and gamma–beta responses.

Feature centroids for each condition were selected by 
conducting a search of the local maxima within each fea-
ture. This search revealed that the gamma–beta feature 
consists of two distinct maxima, a gamma and beta cen-
troid, and that the theta-2 feature consisted of two dis-
tinct maxima corresponding to the approximate onset 
(theta-2) and offset (theta-2b) of the feature. The tem-
poral and spectral distributions in Figs. 5 and 6 confirm 
that the gamma and beta centroids are distinct compo-
nents, and that the theta-2b centroid appears to be a dis-
tinct component. The latency, frequency, and RP values 
for each centroid are listed in Table 1, and represented 
graphically in Fig. 7. We denote the second theta-2 cen-
troid as theta-2b in Table  1, but it is not depicted in 
Fig. 7.

Discussion
Our aim was to examine and describe the spectral-
temporal features of mismatch responses in the EEG 
of sleeping infants from a clinically viable electrode 
montage. The results of this study provide valuable 
insight into the neurophysiological mechanisms that 
underlie processes of prediction and discrimination in 
the developing brain. Below, we discuss the spectral-
temporal features of these mechanisms, and describe a 
model for how these responses may reflect early speech 
discrimination.

The group-level compromise shown in Fig.  3 depicts, 
essentially, the experiment-wise probability of observing 
a spectral-temporal modulation during any given deviant 
trial. These spectral-temporal bounds are corroborated by 
previous findings of theta, alpha, beta, and gamma modu-
lations at similar frequency ranges and latencies in audi-
tory oddball responses. The present results suggest that 

(32)ydT =
1

J

J∑

j=1

(
hdj ∗ gd

j

)

(33)ydF =
1

K

K∑

k=1

(
hdk ∗ gd

k

)

Fig. 4 MMRTF compromise projections by condition: a non‑speech 
(noise‑tone), b vowel (/i/–/a/), and c consonant (/da/–/ba/). Each 
projection is shown with time in milliseconds along the abscissa, and 
frequency in Hz along the ordinate. The relative probability for the 
compromise is displayed as a heat map defined by the colorbar
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auditory oddball discrimination, as represented by the 
MMRTF, occurs as a dynamical process between multi-
ple neural generators spanning the delta, theta, beta, and 

gamma frequency bands. We suspect the lack of an alpha 
response is due to sleep state, as alpha is generally associ-
ated with shifts in attentional processing while awake.

Fig. 5 Mean temporal probability distributions for each extracted feature (beta–gamma, theta‑1, and theta‑2). In a the distributions are plotted 
by condition to highlight the differences in each feature; whereas in b the distributions are plotted by feature. In each plot, time in milliseconds is 
represented along the abscissa and the mean probability is plotted along the ordinate
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Fig. 6 Mean spectral probability distributions for each extracted feature (beta–gamma, theta‑1, and theta‑2). In a the distributions are plotted by 
condition to highlight the differences in each feature; whereas in b the distributions are plotted by feature. In each plot, frequency in Hz is repre‑
sented along the abscissa and the mean probability is plotted along the ordinate

Discrimination and contrast difficulty
When comparing the condition-level compromise pro-
jections (Fig. 4), we did not anticipate the generally low 

power in the responses to the vowel contrast (/i/–/a/) 
when compared to the non-speech (noise-tone) and 
consonant (/da/–/ba/) contrasts. Based on the ease of 
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behavioral discrimination of /i/–/a/ [28–30] we pre-
dicted that the relative probabilities would be quite 
large and distinct. Rather, responses to the consonant 
and non-speech contrast were more robust than for 
the vowel contrast. There are several plausible explana-
tions for this. First, the vowel contrast is composed of a 
spectral shift (i.e., a shift in vowel formant frequencies), 
whereas the consonant and non-speech contrasts are 
composed of both spectral shifts and rapid, aperiodic 
temporal shifts. It is possible that spectral differences 
are subtler than the more salient temporal differences, 
and thus elicit a smaller oddball response. However, 
this does not explain the ease of behavioral vowel 
discrimination.

A second explanation for the vowel difference led us 
to review the work by Saffran et  al. [41–43] who have 
thoroughly examined various aspects of development 
of language-learning. Their research suggests that 
language learning occurs as a probabilistic function 
of sound and sound-pattern exposure. For example, 
infants learning English respond better to multi-syl-
labic patterns with stress on the first syllable, as those 
sounds are more likely to indicate a new word bound-
ary. Functionally, a new word boundary indicates a 
greater likelihood of new information to be processed, 
which inherently requires more processing resources. 
Extended from this, processing resources for vowels, 
which span much longer time courses than consonants, 
require fewer resources to identify (relatively) slowly 
changing features such as formant shifts, which, proba-
bilistically, do not alter the actual information content 
as extensively as a new word boundary. In this way, 
the smaller resource allocation for vowel processing 
would be observed as diffuse spectral power, which was 
observed here. The longer time course for processing 
the vowel information accounts for a greater probability 
of detecting a difference with relatively fewer resources 
expended, which may explain the ease of behavioral 
vowel discrimination.

Spectral‑temporal dynamics
The centroids corresponding to each oscillatory compo-
nent, as shown in Fig. 7, depict a spectral-temporal hier-
archy for change detection [44–46], which is represented 
schematically in Fig. 8. This hierarchy suggests that audi-
tory oddball discrimination is initiated as a gamma burst, 
which then likely emerges as a spatial amplitude modula-
tion in the beta range (cf., [48]). This gamma–beta wave 
packet is temporally coupled with an oscillatory theta 
component, which is followed by a second theta compo-
nent. The latency of the temporal coupling effect relative 
to the peak latency of a second theta oscillation reflects 
some degree of discrimination for the deviant sound. 

Table 1 Centroid frequency, latency, and  relative prob-
ability for  each spectral-temporal feature (gamma, beta, 
theta-1, theta-2, and  theta-2b) and  each contrast condi-
tion: non-speech (noise-tone), vowel (/i/–/a/), and  conso-
nant (/da/–ba/)

Noise‑tone /i/–/a/ /da/–/ba/

Gamma

Frequency (Hz) 33.94 35.71 35.71

Latency (ms) 22 20 59

Relative probability 0.25 0.09 0.38

Beta

Frequency (Hz) 17.56 16.28 18.47

Latency (ms) 56 56 147

Relative probability 0.37 0.16 0.40

Theta-1

Frequency (Hz) 5.07 4.70 2.09

Latency (ms) 58 69 187

Relative probability 1.00 0.62 0.92

Theta-2

Frequency (Hz) 7.05 5.91 5.76

Latency (ms) 194 242 225

Relative probability 0.78 0.54 0.76

Theta-2b

Frequency (Hz) 2.98 2.83 2.90

Latency (ms) 481 493 516

Relative probability 0.26 0.20 0.38

Fig. 7 Feature centroids by condition. The spectral‑temporal center 
of each feature is plotted as a circle, separately for each condition. 
Conditions are displayed in three different colors: red (labeled “N”) 
is the non‑speech (noise‑tone) condition, blue (labeled “V”) is the 
vowel (/i/–/a/) condition, and orange (labeled “C”) is the consonant (/
da/–/ba/) condition. The dotted lines simply connect each condition’s 
centroids for visualization purposes. The relative probability at each 
centroid is denoted by change in size of the circle, as indicated in the 
lower key
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Further, as the latency of the coupling effect increases the 
coupling frequency of the theta oscillation decreases to 
frequencies as low as 2 Hz (which was the lower limit of 
resolution for the spectral dimension). Taken together, 
this cascading process of modulation converges with 
evidence that oddball responses are driven by predictive 
processes that gate incoming sensory information by a 
measure of surprise (see footnote 3) [47–49].

Gamma and beta modulation
When applying a conservative threshold of qLE  ≥  0.8, 
the responses in the gamma and beta bands appeared 
as a consolidated region (Fig. 3b), and are similar to the 
beta/gamma responses described by Isler et al. [15] and 
Stefanics et al. [50]. After separating the centroids for the 
beta and gamma responses (Fig. 7) we observed a distinct 
pattern of a gamma–beta shift that corroborates findings 
described in ERP experiments [51, 52] and from local 
field potentials and single-unit recordings of hippocam-
pal and neocortical pyramidal cells in animal models [39, 
53]. Results from animal models suggest that cells ini-
tially respond to a stimulus by releasing a burst of activ-
ity in the gamma range and then rapidly shift to a burst 
of slower activity in the beta range (with limitations; see 

Traub et  al. [53]). This gamma–beta shift may define a 
temporal window for long-range coherence between 
active components in a neural network, and may deter-
mine whether excitatory connections can synchronize 
at beta frequencies. For example, it is possible that local 
gamma oscillations act as a gating mechanism by limit-
ing beta synchronization of gamma frequency responses 
to repeated, or expected stimulation. The presentation 
of a deviant sound would then, presumably, result in a 
larger gamma frequency response including responses 
from unexpected regions, and thus from uninhibited 
cells that are capable of beta synchronization. However, 
the gamma–beta shift does not, alone, describe the dif-
ferences observed in an oddball response. For example, 
there must be something different about this particular 
shift than a shift that occurs during a standard response.

The speed at which the brain detects a difference in 
stimuli is quite remarkable, and is a process that begins 
as early as 20 ms after the stimulus onset. When detect-
ing a deviant stimulus, change responses appear in the 
gamma band as early as 20  ms for easier contrasts and 
can be much later, ~60  ms, for more difficult contrasts, 
representing a wide range of variability for detection 
latency. The beta centroids appear slightly later at about 
50–60 ms for easier contrasts, and can be much later at 
about 120–150  ms for more difficult contrasts. These 
beta centroids also correspond with the beta/gamma 
latencies reported by Isler et al. [15] and Stefanics et al. 
[50]. One explanation for this very rapid change detec-
tion is that these responses reflect neural mechanisms 
of pattern recognition and predictive processing; pro-
cesses represented by gamma–beta shifts to changes in 
expectancy. Evidence for such predictive processing has 
been eloquently described in a review by Bendixen et al. 
[49]. In that review, the authors present a comprehensive 
model of predictive processing that (generally) includes 
a spectral-temporal hierarchy, such as that described by 
the results in this and other studies [44, 45, 52, 54]. To 
better understand this process, we must also account for 
the changes in lower frequency theta components that 
correspond to the detection of deviant sound.

Cross‑frequency coupling
Another important feature of the MMRTF is the concur-
rent timing of the gamma–beta and theta-1 modulations 
(see Fig.  5). Such concurrent timing between different 
frequency components is often described as a cross-fre-
quency coupling (CFC) response (for review, see [39]). 
CFC is hypothesized as a mechanism for long-range 
synchrony between distinct, local generators of gamma 
activity. Schematically, we might think of the lower fre-
quency theta waves as spatial modulators between net-
work components operating in the gamma and beta 

Fig. 8 Schematic model of the spectral‑temporal dynamics of audi‑
tory oddball discrimination. Time from stimulus onset is represented, 
arbitrarily, along the abscissa. Frequency in Hz is represented along 
the ordinate. In this schematic, a deviant stimulus initiates a gamma 
response, which is then shifted into a beta synchronization when the 
auditory signal differs from some expectation. This gamma‑beta wave 
packet is coupled (CFC) with a theta oscillator, theta‑1 (shown in 
blue). An additional theta oscillator, theta‑2 (shown in red), is activated 
at a slight delay relative to the beta–gamma burst. The difference 
between these two theta oscillators reflects the degree to which the 
actual response differs from the expected response; that is, it reflects 
some amount of surprise to the deviant sound
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ranges (e.g., see [47]). With regard to deviance detection, 
the latency and coherence of CFC may act as a primary 
gating mechanism for incoming information, where some 
combination of latency and coupling strength provides a 
measure of surprise. The coupling latencies for each con-
dition are represented in Fig.  7, which clearly shows a 
later CFC effect for the more difficult consonant contrast.

To make sense of this process, consider the simplic-
ity of the basic oddball paradigm: one sound is repeated 
periodically, and a second sound is occasionally played 
instead; with this being repeated hundreds of times. If 
beta synchronization occurs via a gamma–beta shift as 
described above, then we might expect a larger gamma 
response to a deviant sound, followed by a noticeably 
larger beta synchronization. The emergence of beta syn-
chronization occurs at some phase relative to a theta 
oscillator that itself is phase-locked to the expected rate 
of repetition [52]. It is plausible that the beta wave packet 
then perturbs this theta oscillator, which we observe as 
the CFC effect. As the original sound is repeated again, 
we should observe a habituation effect with each rep-
etition, and we would expect that habituation to be most 
notable in beta frequency ranges and latencies. In the 
present study, we did not test for this habituation effect, 
but previous studies of habituation and refractoriness 
support this notion [26, 55].

Theta modulation
We might infer that the observation of a theta-1 modu-
lation is driven by the CFC effect; that is, we observe a 
theta-1 perturbation concurrent with beta synchroniza-
tion. However, this inference does not account for the 
observation of the theta-2 response, nor does the present 
study allow us to resolve this issue. One explanation is 
that the theta-2 response occurs as a release from local 
inhibition of beta synchronization by concurrent gamma 
oscillations, as described above. Another explanation is 
that a dedicated theta oscillator responds solely to pertur-
bations of other theta oscillators that are actively process-
ing incoming information. Yet another explanation is that 
the cause of the theta-2 response is simply not observed 
by these analysis methods. For example, because the 
difference estimates were computed in the complex 
time–frequency plane, we expect to observe spatial AM 
and PM effects as spectral perturbations, while FM and 
spectral power effects would be less noticeable. Other 
experimental methods, such as those that resolve syn-
chronization/de-synchronization effects [51] may be bet-
ter suited to resolving the catalyst of theta-2.

Fuentemilla, Marco-Pallarés et  al. [22, 56] suggested 
that two distinct theta components, a frontal amplitude 
modulated component and a temporal phase modu-
lated component, represent operations from distinct 

neurophysiological mechanisms. Hsiao et al. [23] further 
suggested that these two theta components might char-
acterize long-range phase synchrony within a temporo-
frontal network for change detection. In the present 
results, theta-1 corresponds with the earlier temporal 
component and theta-2 with the later frontal component. 
Comparisons of the condition-level compromises show 
that the difference between easier and more difficult con-
trasts is represented by a spectral-temporal shift between 
these two theta components. We cannot say whether 
the time–frequency shift between the two theta compo-
nents is a determinant of phase modulation, or “phase-
resetting”, or a consequence thereof; however, we suggest 
that this time–frequency shift corresponds with such a 
mechanism.

Expectancy and surprise
Taken together, a dynamical process of expectancy and 
surprise4 can characterize deviance detection in an odd-
ball paradigm. In this way, the entropy of an oscillating 
network characterizes the network’s expectation [47, 48]. 
When the network encounters some amount of surprise 
relative to the expected information, a perturbation of 
that network initiates the conditions for dissipating or 
transferring the unexpected information to higher-order 
processes. For example, the ability of local gamma 
responses to initiate beta synchronization may be 
dependent on some threshold for surprise. Further, this 
synchronization results in series of phase transitions to 
lower frequency components, as observed by the CFC 
effect subsequent to a gamma–beta shift. The actual 
amount of surprise might then be characterized by the 
spectral-temporal shift between theta-1 and theta-2. For 
example, the temporal distributions shown in Fig. 5a sup-
port this notion as the difference in the peaks of the theta 
distributions are closer together for more difficult con-
trasts, and include a greater likelihood of the response 
occurring in the lower delta range.

We suggest that the degree of difficulty for detecting a 
deviant stimulus is represented by a probability function 
that is constrained by the difference in both frequency 
and latency of the theta-1 and theta-2 components and 
by the latency and coupling strength of the beta–gamma 
and theta-1 components. Specifically, the process of 
deviance detection in an oddball paradigm can be char-
acterized by a measure that is proportional to the sur-
prise, S:

4 In information theory, surprise is defined by the negative logarithm of the 
expected information content (i.e., the entropy).

(34)S ∝ −log

(
∂F

C∂T

)
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where ∂F  is the probability of a difference in frequency 
between theta-1 and theta-2, and C∂T  is the probability 
of a latency difference between theta-1 and theta-2 mul-
tiplied by a constant, C, which accounts for the latency 
of the CFC effect. This equation suggests that the spec-
tral-temporal difference between theta-1 and theta-2 
reflects the amount of information in the stimulus that 
was different than expected.

Experimental and clinical implications
The results reported here have implications for future 
experimental research utilizing an oddball paradigm, as 
well as for the clinical application of such methods. A key 
difference in our results and previous results is that spec-
tral-temporal modulations are defined by a probability 
function instead of by measures of power or coherence. 
In this way, the MMRTF represents a complex wave func-
tion that “collapses” upon observation [57]. Considering 
the MMRTF as a wave function has implications for how 
we might interpret results from these experiments. If the 
wave function represents the probability of an observa-
tion, then the actual response during any given trial can 
appear anywhere within that function. Thus, for any sin-
gle trial there is a significant amount of uncertainty as 
to whether such a response did occur, but after multi-
ple observations we gather information to support some 
probability that the response can occur.

One interpretation of this probabilistic view is that any 
single-trial analysis of oddball responses must rely on 
some a priori information about the underlying system 
[58]. Fortunately, such an assumption provides a basis 
of support for implementing machine-learning meth-
ods for single-trial analyses. In this study, we chose the 
modified DISATIS algorithm because, mathematically, 
this approach acts as a precursor for kernel-based meth-
ods such as kernel-PCA, kernel-ICA, and support vector 
machines. Therefore, defining these responses as a proba-
bilistic wave function provides considerable insight into 
how a machine learning approach might be implemented 
in future experiments. Unfortunately, such assumptions 
also infer a lower limit on the number of observations 
needed to achieve certainty for the probability function.

A key motivation for this research is the development 
of objective measures that might be used to assess audi-
tory function in children with pathologies affecting the 
auditory system [15, 59]. For example, an infant identi-
fied with hearing loss must be fit with amplification 
(e.g., hearing aids) that is tuned to optimize informa-
tion processing in certain frequency bands; for exam-
ple, the speech frequencies. Whether an infant can 
discriminate two speech sounds depends on how well 

the amplification is tuned, which has direct implica-
tions for language-learning [41, 60]. An objective meas-
ure such as the MMRTF might provide a means to assess 
whether an infant has adequate access to the speech fre-
quencies. From a clinical perspective, we wish to deter-
mine whether an infant can discriminate between two 
speech sounds. As another example, children with audi-
tory processing disorders exhibit deficits in beta coupling 
observed as shifts in beta synchronization frequencies 
[52, 54]. A measure such as the MMRTF might provide a 
means to better classify these deficits, or to provide real-
time feedback during assessment. In this case, we wish to 
determine whether a child did discriminate between two 
sounds. Of course, to better understand these potential 
applications, further research including these popula-
tions will be necessary.

Clinical use of an oddball paradigm such as the MMR/N 
is often met with skepticism over the validity of results 
at the individual level [15, 61]. One source of such skep-
ticism is the large variability in the latencies of MMR/N 
responses analyzed via traditional signal averaging. 
Indeed the spectral-temporal proximity of the theta-1 and 
theta-2 responses likely account for much of this variabil-
ity, as these two components would appear as a mixture in 
the averaged ERP (cf., [62]). Further, the variability of the 
response onset—the CFC effect—contributes to the tem-
poral overlap and subsequent smearing in the averaged 
response. Results reported here support the notion that 
time–frequency analyses improve the likelihood of detect-
ing and classifying these responses within individuals.

Conclusions
Even during sleep, an infant’s brain is processing infor-
mation about the environment and performing compu-
tations about that information in an unconscious state. 
Moreover, these computations reflect subtle differences 
in acoustic feature processing that are necessary for lan-
guage-learning. Results from this study suggest that brain 
responses to deviant sounds in an oddball paradigm fol-
low a cascade of oscillatory modulations. This cascade 
begins with a gamma response that later emerges as a beta 
synchronization, which is temporally coupled with a theta 
modulation, and followed by a second, subsequent theta 
modulation. The difference in frequency and timing of 
the theta modulations appears to reflect a measure of sur-
prise; that is, it provides a measure of the error between 
the information that was expected, and the information 
that was actually received. These insights into the neu-
rophysiological mechanisms of auditory discrimination 
provide a basis for exploring the clinically utility of the 
MMRTF and other auditory oddball responses.
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