102 research outputs found
Molecular Imaging of Brain Tumours
This chapter is a review of the most common radiotracers currently used in clinical brain tumour imaging, and an update of future potentially useful radiotracers for imaging brain tumours with positron emission tomography (PET). It will focus mainly on gliomaâthe most common type of primary brain tumourâand intracranial metastases, as the cause of the majority of morbidity and mortality in neurooncology. Emerging data support the use of somatostatin analogue PET in the treatment planning and surveillance of meningiomas. There is currently a limited role of PET in other non-glial brain neoplasms including neuronal tumours, pineal and pituitary tumours, germ cell tumours and embryonal tumours (PNET, neuroblastoma). Finally, the newest hybrid imaging modality of PET/MRI and the promise it holds for obtaining state-of-the-art structural and functional imaging data simultaneously, are concisely reviewed
KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra
We announce the discovery of a highly inflated transiting hot Jupiter
discovered by the KELT-North survey. A global analysis including constraints
from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly
evolved, G dwarf with K, , , an inferred mass
M, and radius
R. The planetary companion has mass , radius
, surface gravity , and density
g cm. The planet is on a roughly
circular orbit with semimajor axis AU and
eccentricity . The best-fit linear ephemeris is
BJD and
days. This planet is one of the most inflated of all known transiting
exoplanets, making it one of the few members of a class of extremely low
density, highly-irradiated gas giants. The low stellar and large
implied radius are supported by stellar density constraints from follow-up
light curves, plus an evolutionary and space motion analysis. We also develop a
new technique to extract high precision radial velocities from noisy spectra
that reduces the observing time needed to confirm transiting planet candidates.
This planet boasts deep transits of a bright star, a large inferred atmospheric
scale height, and a high equilibrium temperature of
K, assuming zero albedo and perfect heat redistribution, making it one of the
best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom
Bankruptcy Reform
Presentation materials from the Bankruptcy Reform Course held by UK/CLE in December 1994
Characterizing K2 planet discoveries : a super-Earth transiting the bright K dwarf HIP 116454
We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =â0.16 ± 0.08 and has a radius R = 0.716 ± 0.024 R â and mass M = 0.775 ± 0.027 M â. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of pR = 2.53 ± 0.18 R â. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M â planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.Publisher PDFPeer reviewe
Current Issues in Environmental Law
Materials from the Current Issues in Environmental Law seminar held by UK/CLE in April 1995
Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS
While the sample of confirmed exoplanets continues to increase, the
population of transiting exoplanets around early-type stars is still limited.
These planets allow us to investigate the planet properties and formation
pathways over a wide range of stellar masses and study the impact of high
irradiation on hot Jupiters orbiting such stars. We report the discovery of
TOI-615b, TOI-622b, and TOI-2641b, three Saturn-mass planets transiting main
sequence, F-type stars. The planets were identified by the Transiting Exoplanet
Survey Satellite (TESS) and confirmed with complementary ground-based and
radial velocity observations. TOI-615b is a highly irradiated (1277
) and bloated Saturn-mass planet (1.69
and 0.43) in a 4.66 day orbit transiting a 6850 K
star. TOI-622b has a radius of 0.82 and a mass of
0.30~ in a 6.40 day orbit. Despite its high
insolation flux (600 ), TOI-622b does not show any evidence
of radius inflation. TOI-2641b is a 0.37 planet in a
4.88 day orbit with a grazing transit (b = 1.04) that
results in a poorly constrained radius of 1.61.
Additionally, TOI-615b is considered attractive for atmospheric studies via
transmission spectroscopy with ground-based spectrographs and .
Future atmospheric and spin-orbit alignment observations are essential since
they can provide information on the atmospheric composition, formation and
migration of exoplanets across various stellar types.Comment: 16 pages, 17 figures, submitted to A&
Innovation and entrepreneurship as strategies for success among Cuban-based firms in the late years of the transatlantic slave trade
This article examines how Cuban-based firms and entrepreneurs circumvented ever- increasing risks in the illegal slave trade. The article sheds light to this question by analyzing new qualitative information of 65 Cuban-based firms against the Slavevoyages database. Our findings indicate that Cuban-based firms were entrepreneurial as they exploited the opportunities arising from the volatility of the slave trade by: (a) internalizing networks of agents which allowed the rapid diffusion of information, (b) diversifying trading goods and expanding the number of partnerships to reduce transaction costs and risk, and (c) adopting technological innovations that modified the design and use of vessels
Another Shipment of Six Short-Period Giant Planets from TESS
We present the discovery and characterization of six short-period, transiting
giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) --
TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642),
TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467).
All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a
combination of time-series photometric and spectroscopic follow-up observations
from the TESS Follow-up Observing Program (TFOP) Working Group, we have
determined that the planets are Jovian-sized (R = 1.00-1.45 R),
have masses ranging from 0.92 to 5.35 M, and orbit F, G, and K stars
(4753 T 7360 K). We detect a significant orbital eccentricity
for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days,
= ), TOI-2145 b (P = 10.261 days, =
), and TOI-2497 b (P = 10.656 days, =
). TOI-2145 b and TOI-2497 b both orbit subgiant host
stars (3.8 g 4.0), but these planets show no sign of inflation
despite very high levels of irradiation. The lack of inflation may be explained
by the high mass of the planets; M (TOI-2145
b) and M (TOI-2497 b). These six new discoveries
contribute to the larger community effort to use {\it TESS} to create a
magnitude-complete, self-consistent sample of giant planets with
well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
- âŠ