142 research outputs found

    Two-Sided Pyramid Wavefront Sensor in the Direct Phase Mode

    Get PDF
    The two-sided pyramid wavefront sensor has been extensively simulated in the direct phase mode using a wave optics code. The two-sided pyramid divides the focal plane so that each half of the core only interferes with the speckles in its half of the focal plane. A relayed image of the pupil plane is formed at the CCD camera for each half. Antipodal speckle pairs are separated so that a pure phase variation causes amplitude variations in the two images. The phase is reconstructed from the difference of the two amplitudes by transforming cosine waves into sine waves using the Hilbert transform. There are also other corrections which have to be applied in Fourier space. The two-sided pyramid wavefront sensor performs extremely well: After two or three iterations, the phase error varies purely in y. The two-sided pyramid pair enables the phase to be completely reconstructed. Its performance has been modeled closed loop with atmospheric turbulence and wind. Both photon noise and read noise were included. The three-sided and four-sided pyramid wavefront sensors have also been studied in direct phase mode. Neither performs nearly as well as does the two-sided pyramid wavefront sensor

    Investigation of laser dynamics, modulation and control by means of intra-cavity time varying perturbation

    Get PDF
    The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources

    Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography

    Get PDF
    The microstructural patterns formed during liquid to solid phase transformations control the properties of a wide range of materials. We developed a novel methodology that allows in situ quantification of the microstructures formed during solidification of high temperature advanced alloys. The patterns formed are captured in 4D (3D plus time) using a methodology which exploits three separate advances: a bespoke high temperature environment cell; the development of high X-ray contrast alloys; and a novel environmental encapsulation system. This methodology is demonstrated on Ni, Fe, and Co advanced alloy systems, revealing dendritic pattern formation. We present detailed quantification of microstructural pattern evolution in a novel high attenuation contrast Co-Hf alloy, including microstructural patterning and dendrite tip velocity. The images are quantified to provide 4D experimental data of growth and coarsening mechanisms in Co alloys, which are used for a range of applications from energy to aerospace

    Effects of iron-rich intermetallics and grain structure on semisolid tensile properties of Al-Cu 206 cast alloys near solidus temperature

    Get PDF
    The effects of iron-rich intermetallics and grain size on the semisolid tensile properties of Al-Cu 206 cast alloys near the solidus were evaluated in relation to the mush microstructure. Analyses of the stress–displacement curves showed that the damage expanded faster in the mush structure dominated by plate-like β-Fe compared to the mush structure dominated by Chinese script-like α-Fe. While there was no evidence of void formation on the β-Fe intermetallics, they blocked the interdendritic liquid channels and thus hindered liquid flow and feeding during semisolid deformation. In contrast, the interdendritic liquid flows more freely within the mush structure containing α-Fe. The tensile properties of the alloy containing α-Fe are generally higher than those containing β-Fe over the crucial liquid fraction range of ~0.6 to 2.8 pct, indicating that the latter alloy may be more susceptible to stress-related casting defects such as hot tearing. A comparison of the semisolid tensile properties of the alloy containing α-Fe with different grain sizes showed that the maximum stress and elongation of the alloy with finer grains were moderately higher for the liquid fractions of ~2.2 to 3.6 pct. The application of semisolid tensile properties for the evaluation of the hot tearing susceptibility of experimental alloys is discussed
    corecore