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Abstract The microstructural patterns formed during liquid to solid phase transformations control 16 

the properties of a wide range of materials. We developed a novel methodology that allows in situ 17 

quantification of the microstructures formed during solidification of high temperature advanced 18 

alloys. The patterns formed are captured in 4D (3D plus time) using a methodology which exploits 19 

three separate advances: a bespoke high temperature environment cell; the development of high X-ray 20 

contrast alloys; and a novel environmental encapsulation system. This methodology is demonstrated 21 

on Ni, Fe, and Co advanced alloy systems, revealing dendritic pattern formation. We present detailed 22 

quantification of microstructural pattern evolution in a novel high attenuation contrast Co-Hf alloy, 23 

including microstructural patterning and dendrite tip velocity. The images are quantified to provide 24 

4D experimental data of growth and coarsening mechanisms in Co alloys, which are used for a range 25 

of applications from energy to aerospace.  26 

 27 
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1. Introduction 30 

The patterns that form as materials transform from a liquid to solid directly affect the final properties 31 

of material, be it a snowflake or aeroengine gas turbine (AGT) blade. Dendrites are one of the most 32 

prevalent microstructural morphologies formed, for example in nickel superalloy AGTs [1] to lithium 33 

depositing out in a battery [2]. The in situ observation of the patterns formed during the 34 

transformation from liquid to solid phase, or solidification, was first performed using transparent 35 

organic liquids (metallic analogues) [3–5] and optical microscopes. These results enabled the 36 

validation of solidification models linking constitutional undercooling due to solute build-up with 37 

interface motion, and the resulting crystal morphologies [4,6]. In areas such as the study of colloids, 38 

organic analogue techniques continue to provide novel insights into the kinetic and morphological 39 

aspects of crystal growth, and real-time, 2D full-field data of thermal and compositional distributions 40 

[7]. However, in optically opaque systems, from magma to metallic alloys, other techniques are 41 

required.  42 

The first direct observations of dendritic pattern growth in metallic systems were captured in 2D using 43 

in situ radiography in an Al-30wt% Cu alloy [8]. Subsequently, there have been many radiographic 44 

studies of low temperature alloys using laboratory and synchrotron X-ray sources, including 45 

elucidation of the growth of secondary phases [9] and defects such as porosity [10]. However, even 46 

with radiography there is a paucity of studies on high melting point alloys, with only a few on Fe [11]. 47 

X-ray radiography is fast, but it requires thin samples that constrain the evolving microstructures, both 48 

by restricting the orientation of patterns formed and by altering the growth kinetics. During the last 49 

decade, there has been a dramatic rise in the use of X-ray tomography (often termed X-ray 50 

microtomography (XMT or µCT), X-ray computed tomography (XCT), or synchrotron computed 51 

tomography (sCT)) to study the evolution of microstructures during solidification. Through recent 52 

advances in synchrotron X-ray facilities and iterative reconstruction algorithms, it is now possible to 53 

perform fast 4D (3D + time/stress/temperature) tomography on low temperature (<800 °C) metallic 54 

alloys as they solidify [12,13]. Some researchers have also studied the influence of deformation on 55 

semi-solid alloys [14–16]. These X-ray radiographic and tomographic investigations have helped to 56 

inform and validate many new mathematical models developed for low temperature solidification 57 

microstructures [17–19]  and defects [10] in metals. 58 

Most 4D solidification studies of metallic systems have been performed on Al-Cu based alloys [20]. 59 

These alloys provide excellent attenuation contrast between the solidifying face centred cubic (FCC) 60 

α-phase and the liquid. Although the morphological and kinetic aspects observed via the in situ 61 

tomography can be correlated with industrially viable Al alloys, there is no confirmation that the 62 

results can be extended to other FCC systems that solidify at very high temperatures. High 63 

temperature alloys such as nickel superalloys, cobalt superalloys, and iron alloys have yet to be 64 
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studied in the semi-solid state using 4D imaging, although high temperature solid state investigations 65 

have been performed[21]. Understanding pattern formation during the solidification of these high 66 

temperature advanced alloys is critical to predicting their strength, and preventing the formation of 67 

solidification defects such as freckles [17,22], and grain mis-orientation during directional (DX) and 68 

single crystal (SX) growth  [23,24].  69 

There is also an extensive field of modelling of pattern formation in high temperature advanced alloys 70 

[1,25–29]. However, these computational simulations have only been validated against long-chain 71 

organic analogues or low melting point metallic analogues [17]. Unfortunately, these analogue 72 

systems have very different diffusion coefficients and interfacial energies as compared to high 73 

temperature alloy systems. Thus, the possibility to visualize the formation of such defects/morphology 74 

in situ in alloy systems based on Ni, Fe and Co could dramatically advance the design and production 75 

of new superalloys.  76 

In this study, a methodology incorporating three main advances is provided for tomographic 77 

examination of the solidification patterns in high temperature alloys with melting points exceeding 78 

1300 °C: (a) design criteria for high X-ray attenuation contrast alloys; (b) the development of an 79 

environmental cell enabling the combination of high temperature solidification tests and synchrotron 80 

X-ray tomography; and (c) a specimen environmental encapsulation system. These innovations are 81 

applied to study the evolving solidification patterns in Ni, Fe and Co alloys in 4D (3D plus time).  82 

2. Materials and Methods 83 

2.1. Alloy Design 84 

The majority of commercial Ni, Fe, and Co alloys form solidification phases with negligible X-ray 85 

attenuation variation between them and the interdendritic liquid, making X-ray tomographic 86 

characterization highly challenging. To perform 4D imaging of solidification in these materials, a 87 

bespoke alloy must be used that meets four criteria: (a) the primary phase must contain little or no 88 

solute, (b) at the first invariant reaction temperature there must be 40% - 60% liquid, (c) the X-ray 89 

attenuation characteristics of the solute must be markedly different from the solidifying grains, and (d) 90 

the primary phase that appears during solidification must be face centred cubic (body centred cubic in 91 

the case of Fe). Criteria (a), (b) and (c) are necessary for achieving high X-ray contrast, while (d) is 92 

essential for mimicking the solidification behaviour of alloys used in AGTs and industrial gas turbines 93 

(IGTs).  94 

During solidification, the solubility of the primary phase is interpreted in terms of the partition 95 

coefficient, k, where k=Cs/CL, where Cs and CL are the concentration of solute in the solid and liquid 96 

respectively, as shown in supplementary Fig. S1a. To meet criterion (a), the value of k must be quite 97 

small, which also implies that criterion (b) is respected. For criterion (c), each element’s characteristic 98 
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X-ray absorption edges are exploited. Using a monochromatic beam just above this absorption edge 99 

enables clear identification between one phase and another. Second, when a polychromatic (white) X-100 

ray spectrum interacts with materials, different phases absorb different amounts of X-rays. This is 101 

known as non-characteristic X-ray interaction. Consequently, depending on the alloy system, either a 102 

white beam or a monochromatic X-ray beam with an energy just above one of the characteristic edges 103 

may be used for achieving a good contrast between the solid and liquid phases. 104 

To develop the high X-ray contrast Ni, Fe and Co alloys, various metallic elements were examined. 105 

For Co, of the elements having smaller atomic numbers, only Mg forms a eutectic with very small k. 106 

However, Co and Mg have nearly identical non-characteristic X-ray absorption behaviour and both 107 

lack absorption edges at X-ray energies found at high-energy synchrotron beamlines, such as the I12 108 

at the Diamond Light Source where the experiments were conducted. Of the elements having larger 109 

atomic number than Co, only Hf fits the stated criteria. For the Co-Hf system [30,31], photon energies 110 

in the range of 65 to 80 keV were found to yield a substantial attenuation difference between the 111 

solidifying α-Co dendrites and Hf rich interdendritic liquid. This difference arises mainly as a result of 112 

the k-absorption edge of Hf at 65.351 keV [32]. Similar arguments can be made for Ni and Fe.  113 

In the present study, Ni-14 wt.%Hf, Fe-11 wt.%Hf and Co-18 wt.%Hf alloys were chosen for 4D 114 

imaging. The Co-Hf alloy used in this investigation was obtained by induction melting and 115 

conventional casting in an oxide (Al2O3/ZrO2) crucible followed by air-cooling. The Ni-Hf and Fe-Hf 116 

alloys were prepared in a vacuum arc melter using induction melted Ni-Hf and Fe-Hf master alloys, 117 

respectively. The cylindrical samples for the in situ solidification trials were extracted from the 118 

middle section of the as-cast sample.  119 

2.2. High temperature environmental cell and experimental setup for in situ XCT 120 

The high temperature environmental cell developed in this study consists of two modules, a sample 121 

module and a heating module, and achieves a number of design requirements. These include the 122 

ability for in situ XCT of solidifying alloys with melting point exceeding 1300 °C, slow cooling rates 123 

on the order of 10-2 °Cs-1, thermal precision of ±0.5 °C over a sample length of at least 10 mm, and 124 

easy integration with bespoke mechanical rigs such as the P2R [15,33] for in situ thermo-mechanical 125 

investigations in the semi-solid or solid states.  126 

The sample module (Fig. 1a), consists of an encapsulated cylindrical sample (1.4 mm ø x 8 mm) that 127 

is centrally seated and supported by an alumina sleeve and further supported by an alumina sample 128 

mount 60 mm in height. Encapsulation was required to minimize oxidation and to contain the 129 

specimen safely in liquid state. Each cylindrical sample was encapsulated in a 1.5 mm internal 130 

diameter quartz tube (Fig. 1b) filled with Ar gas. Within the encapsulation, the metallic sample was 131 

supported by using a glass rod which in turn was fused to one end of the quartz tube.  132 
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The heating module is shown in Fig. 2a, with the sample module inserted. The environmental cell 133 

setup on the I12 beamline at the Diamond Light Source is shown in Fig. 2b. In this device, porous 134 

insulation fibre is enclosed in a water-cooled stainless steel shell to house a centrally placed u-shaped 135 

MoSi2 high current heating element. MoSi2 heating elements were chosen due to their high heat 136 

density and high temperature (> 1000 °C) stability in both oxidizing [34,35] and reducing 137 

environments [35]. Temperature was controlled by two R-type thermocouples placed at about 3 mm 138 

from the sample surface. The sample is separated from the heating element using a central dense 139 

alumina ceramic column. Further, to isolate the environmental cell chamber from the ambient 140 

atmosphere, fused quartz faceplates, 0.5 mm thick, were placed over square 10 mm X-ray windows. 141 

During the in situ high temperature solidification experiment, a 0.0165 nm (75 keV) monochromatic 142 

X-ray beam with PCO edge camera at a pixel size of 1.3 µm was used for tomographic imaging with 143 

900 projections and 0.1 s exposure. The experiment was conducted as follows. First, the sample was 144 

heated to 1400 °C, held isothermally for 10 minutes, and then cooled at a rate of 0.05 °Cs-1. 145 

Concurrently, a series of X-ray tomographic images were acquired. The imaging conditions described 146 

above allowed for acquisition of 27 tomograms within the semi-solid regime. The reconstructions 147 

were performed by standard filtered back projection [36].  148 

To improve the sample alignment, and to ensure safe operation resulting from the high temperatures, 149 

thermal modelling of the environmental cell was performed using SolidWorks[37] software. 150 

Boundary conditions were set on the insulating fibre block (50 °C) and heating element surface (1800 151 

°C). The model included radiative heat transfer, but the contact thermal resistance between the mating 152 

surfaces was ignored. The modelled temperature profile in the central block of the environmental cell 153 

is shown in Supplementary Fig. S2a. In addition to isolating the sample from the heating elements, the 154 

central alumina core was observed to promote radiative heating, homogenizing the temperature across 155 

the central sample volume. The temperature profile across the entire quartz tube is shown in 156 

Supplementary Fig. S2b. Based on the model results, the location of the X-ray field of view was 157 

chosen such that there was minimum thermal gradient within the imaged volume. The model 158 

predicted < 3 °C variation across sample height in the FOV.  159 

3. Results and Discussion 160 

3.1. Methodology Demonstration 161 

The in situ, 4D evolution of patterns during the liquid to solid phase transformation in each of these 162 

alloys is shown in Fig. 3 and animated for the case of Co-Hf alloy in Supplementary Movie 1. The 163 

corresponding as-acquired 2D images from the middle of the Co specimen are shown in 164 

Supplementary Movie 2. These results demonstrate the methodology of combining a bespoke high 165 

temperature furnace with X-ray translucent windows, custom designed high X-ray attenuation 166 
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contrast alloys, encapsulation system and high-speed synchrotron X-ray tomographic imaging to 167 

capture solidification pattern evolution in high temperature alloys. 168 

The formation of dendritic patterns in solidifying Ni and Fe alloys shown in Fig. 3a-d captures the 169 

formation of primary, secondary and tertiary dendritic arms in these alloys. The alloys were solidified 170 

at a relatively slow cooling rate of 0.05 °Cs-1. In Ni, this cooling rate is sufficient to induce single 171 

crystal growth as can be seen in Fig 3a and b. In this experiment, solidification begins with the 172 

nucleation of a grain on the sample surface, forming dendrites which branch into secondaries in the 173 

horizontal plane, which in turn form tertiary arms, which grow quickly upwards in the available 174 

sample space ahead forming a forest of single crystal primary dendrites. These dendrites grow 175 

vertically upwards, almost perpendicular to the sample axis (z). The resulting structure is an 176 

interlocking dendritic mesh extending across the entire sample. The growth of secondary arms is 177 

limited by solute interaction with the neighbouring patterns; several instances of direct tip-tip 178 

interaction can also be observed.  179 

The growth of a BCC δ-Fe primary dendrite under identical solidification conditions at the beginning 180 

and late stages of solidification are shown in Fig.3c and d. These images show how the evolving 181 

patterns are dominated by pattern thickening, coalescence and coarsening in the late stages of 182 

solidification, as quantified previously in magnesium[38] and other light alloys[13]. Further, they 183 

allow the coarsening kinetics to be quantified for the first time in an Fe alloy. 184 

3.2. Morphological Aspects of Dendrite Growth of Co alloys  185 

Having demonstrated that the methodology is applicable to Ni and Fe, we will use the Co alloy as an 186 

example to demonstrate how detailed mechanistic and quantitative patterning data can be extracted to 187 

inform and validate models.  188 

3.2.1. Qualitative observations of Co solidification and dendritic pattern formation  189 

Figure 3e-h shows the evolution of Co dendrites during solidification at a cooling rate of 0.05 °Cs-1. 190 

Four images are provided, spanning 125˚C and an evolution in fraction solid from 1.6% to 40.9%. 191 

The observed four-fold symmetry is characteristic of an FCC structure. The dendrites nucleate on the 192 

sample surface and grow inwards with no discernible preferred orientation relative to the sample axis. 193 

A 20-30 µm Hafnium oxide layer was present on the sample surface, as characterised by post-194 

solidification SEM-EDX examination. This oxide layer was visible in the tomograms due to 195 

attenuation difference even when the sample was molten; therefore, we hypothesise that this oxide 196 

assists nucleation of the α-Co phase. 197 

The first grain to nucleate and grow is labelled as G1 in Fig. 3e. Note that two dendrites are marked as 198 

G1 (coloured blue and brown) since the 4D images reveal that they are both part of the same single 199 

crystal. We hypothesise this since both have identically aligned primary directions. The secondary 200 
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arms also have the identical 4-fold symmetry directions, further confirming they are part of the same 201 

crystal. These two primary dendrites will have started from a nucleus on the bottom surface, which 202 

initially forms a single primary arm, most likely the brown one since it is larger, that then forms 203 

secondaries, and subsequently, tertiary dendrite arms. One of these tertiary arms, just sufficiently far 204 

from the original primary, will grow quick with the same crystal orientation as the first primary 205 

(brown). This tertiary becomes another primary dendrite (G1, blue), establishing the repeating 4-fold 206 

patterning of an FCC crystal structure.  207 

Similarly, the orange and the light green dendrites (Fig. 3f) form part of a single grain (G2). A third 208 

large grain, depicted in dark green (G3) has sufficient space to form a remarkable pattern of primary, 209 

secondary and tertiary arms forming in a 4-fold spidery star shape. Until now, the complexity of these 210 

shapes has only been visualised via computational simulations (e.g. [1,25–29]). Using 4D in situ 211 

synchrotron observations we can determine the key phenomena to inform model development, and 212 

validate the microstructural simulations for real engineering alloy systems, such as Ni- and Co- 213 

superalloys and alloy steels.  214 

The morphological data which can be easily extracted from these unique observations is demonstrated 215 

by examining zoomed regions of the Co alloy 4D images given in Fig. 4. The initial stages of growth 216 

just after nucleation are captured in Fig. 4a, where two spindly primary dendrites (G1) grow very 217 

rapidly into the liquid. Here, we can measure the average tip velocity per tomogram by dividing the 218 

length they grow by the time per image. This provides the first value for tip velocity during the 219 

solidification of a Co alloy, 11±2 µm/s. (Note, this is the value just after nucleation in the temperature 220 

range of 1379-1373 °C, where the growth was unobstructed, approximating unconstrained 221 

conditions.) 222 

New insights into the growth of secondary arms during solidification pattern formation can further be 223 

analysed from the images. For example, for grain G1 in Fig. 3e,f and 4a,b, the majority of secondary 224 

arm growth can be observed to be in the plane normal to the direction (depicted by a red arrow in Fig. 225 

4a) in which the primaries are connected (below the field of view, FOV). This preferential growth of 226 

the secondary arms is not expected crystallographically, and makes the dendritic patterns more plate-227 

like rather than a perfect 4-fold symmetric tree. This can be explained from the 3D images of G1- the 228 

spacing between the first primary (brown) and second forming (blue) will be a minimum, hence the 229 

secondaries that grow in this plane will have solute fields that quickly impinge, slowing their growth. 230 

In the plane normal to this, the secondary tips experience free growth until their solute fields impinge 231 

on the specimen walls, growing out quickly.  232 

Many models for aerospace and industrial gas turbine (AGT/IGT) blades are focused on grain mis-233 

orientation and spurious grain growth[18,39]. In the Co alloy 4D images we observed, a number of 234 

distinct competitive growth mechanisms were observed, which provide the first, 3D direct evidence of 235 
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the microstructural factors that promote the formation of these defects. Firstly, examining grain G1, 236 

the secondary arms of the blue primary are completely restricted in three directions, two of these by 237 

the walls and in one direction by the neighbouring brown primary, as shown in Fig. 4b-d. This 238 

scenario does not arise in case of grains G2 and G3 due to the larger relative distance between the 239 

fully developed parallel arms. Secondly, again referring to grain G1 and Fig. 4b, the primary blue 240 

dendrite is clearly overgrown by a secondary growing from the brown primary dendrite. As 241 

solidification progresses (Fig. 4c and d), local re-melting takes place on the lower side of the brown 242 

dendrites blocking secondary arm, whilst on the top half tertiary arms form and start growing 243 

upwards. This type of local remelting has been shown to lead to fragmentation in Al alloys [40–43]. 244 

Thirdly, in Fig. 4e-h growth competition is shown between two randomly oriented grains that nucleate 245 

at almost same time and then grow in close proximity to each other. As can be seen, the growth of the 246 

secondary arms in the middle of grain G2 is arrested by grain G4. These roles are reversed near the tip 247 

of G4 where the secondary arms are suppressed by the growth of secondary and tertiary arms of G2, 248 

although this may not seem obvious from the current viewing angle.  249 

In many low temperature alloy solidification experiments, grain competition is seen to result in stray 250 

grains, and re-melting is seen to culminate in pinch-off where a dendrite arm completely detaches 251 

from its parent [40–43]. This kind of interaction is also reported in other metallic alloy systems where 252 

experiments were performed radiographically [44], however the exact morphology, for example the 253 

development of this cup-like morphology becomes apparent through a 3D tomographic examination. 254 

These types of observations are critical for developing accurate models of dendrite fragmentation in 255 

order to improve processing of Co and other high temperature advanced alloys, ultimately reducing 256 

component costs. 257 

3.3. Quantitative Observations 258 

3.3.1. Fraction solid evolution 259 

These tomographic imaging observations showed that the α-Co dendrite tip velocities are remarkably 260 

fast, given the slow cooling rate of 0.05 °Cs-1. At this cooling rate, the difference in temperature 261 

between tomograms is ~5 °C per tomogram. At the end of first and second scans, the observed solid 262 

fraction was 1.6 and 8.5% respectively. The latter amounts to 25% of the overall expected solid 263 

fraction just above eutectic temperature during equilibrium cooling. The rate of primary phase 264 

formation (fraction solid, fs Fig. 5a) reduces as solidification progresses and the eutectic temperature 265 

is approached. The fs as estimated from the lever and Scheil equation are also plotted in Fig. 5a, using 266 

a partition coefficient, k, of 0.07 (the method adopted for estimation of k is provided in supplementary 267 

note 1). The experimental solid fraction variation was close to the Scheil estimate, indicating that the 268 

Hf partitions readily to the liquid upon the growth of dendrites/solid during solidification. Therefore, 269 

even at this slow cooling rate the experiment is far from equilibrium.   270 
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3.3.2. Surface area evolution 271 

The evolution of surface area per unit volume of the solid (!!) in the Co-Hf alloy is shown in Fig. 5b, 272 

both for the whole volume (containing many grains) and the single largest grain (G2). Generally, !! is 273 

high during the initial stages of solidification [13,38,45] due to the high surface area to volume ratio 274 

given by the high curvature nascent patterns/grains. As the solidification progresses, a steep decrease 275 

in !! is observed as a result of growth (increase in length) of each pattern, Fig. 4b and f. Eventually 276 

the growth ceases, the patterns start to thicken and the local curvature reduces, Fig. 4c and g, until the 277 

end of solidification, Fig. 4d and h. During thickening, the patterns also coarsen via the reduction in 278 

tip curvature and coalescence of secondary arms, which reduces the surface area. After the initial 279 

growth, !! continues to reduce through combination of thickening and coarsening at a gradually 280 

declining rate.  281 

It is clear from the competitive growth scenarios described earlier that the impingement of patterns 282 

happens at various scales and at different stages during the course of solidification. This affects the 283 

overall growth and coarsening. One way to quantify this is to observe the evolution of entire solid 284 

surface area normalized by the volume of liquid and solid, !!∗ as a function of fraction solid, fs, as 285 

given by Rath [46] and Cahn equation [47]; 286 

!!∗ = ! × !!! × (1 −  !!)! (1) 

where, ! is a proportionality constant and ! = ! = 2/3 for Cahn and 0 < !, ! < 1 for Rath. The 287 

Rath equation is applicable for growth of features with varied aspect ratios while Cahn equation is 288 

more suitable for near equiaxed (spherical) features.  289 

The evolution of !!∗ as a function of fs for the Co-Hf alloy is shown in Fig. 6, along with the Cahn and 290 

the Rath curves for the current observation. The Rath curve of !!∗ for the α-Al dendritic growth in Al-291 

10 wt.% Cu, reproduced from [13] is also provided for comparison. The !!∗ in the current alloy 292 

increases continuously but at a gradually reducing rate during the course of solidification.  This 293 

indicates that the rate of thickening of dendrites is still faster than the rate of coalescence of secondary 294 

arms. Prior studies comparing experimental coarsening rates to the Cahn and Rath equations were in 295 

alloys with a very low fraction eutectic (fe), such as the study by Limondin et al. [13] in Al 10wt% Cu 296 

where their results show a fe of <0.12, while for the Co-Hf alloy, Fig. 6, shows the fe is approximately 297 

0.6, or 60% as compared to their 12%. In the Co-Hf alloy (under continuous cooling conditions), 298 

although secondary arm coalescence/coarsening is occurring it does not exceed the influence of 299 

fraction solid increase upon !!∗ as the fraction primary phase is so low. As shown by Guo et al., if an 300 

alloy is held isothermally (MgZn in their case), then the coarsening dominates as expected[38].  301 

4. Conclusions 302 
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A novel methodology was developed enabling 4D (3D plus time) tomographic examination of pattern 303 

formation during the solidification of high temperature advanced alloys with melting temperatures 304 

exceeding 1300˚C. The methodology combines three key advances: a bespoke high temperature 305 

environment cell; the development of high X-ray attenuation contrast alloys; and a specimen 306 

environmental encapsulation system. This method was successfully demonstrated on Ni, Fe and Co 307 

alloy systems.  308 

For a Co-Hf alloy system, the time-resolved tomographic datasets were examined in detail, 309 

elucidating novel insights into the nucleation and growth mechanisms in Co alloys, which are a 310 

critical aerospace alloy system. The results were quantitatively analysed, with quantities measured as 311 

a function of time/temperature including: dendrite tip velocity, fraction solid, specific surface area and 312 

coarsening. Key competitive growth and coarsening mechanisms were also elucidated. The insights 313 

and quantitative data obtained will help to both inform and validate new computational models of 314 

pattern formation during the liquid to solid phase transformation in high temperature advanced alloys 315 

and many other systems.  316 
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Fig. 1. (a) Schematic of the sample module with alumina sample mount and quartz encapsulated 454 

sample and (b) image of the as-encapsulated sample, held in place at one end of the encapsulation by 455 

a quartz rod.  456 

Fig. 2. (a) Schematic of one half of environmental cell with heating and sample module and (b) 457 

schematic of the environmental cell setup at the I12 beamline of Diamond Light Source. Scale bar = 458 

32.5 mm. 459 

Fig. 3. The 3D evolution of dendritic patterns in Ni-14 wt. % Hf, Fe-11 wt. % Hf and Co-18 wt. % Hf 460 

alloys during solidification at a cooling rate of 0.05 °Cs-1 are shown. The interlocking FCC α-Ni 461 

dendritic patterns at 495 and 1496 s after the start of solidification are shown in (a) and (b) 462 

respectively. The development of a single δ-Fe pattern during solidification via thickening, coarsening 463 

and coalescence mechanisms captured at 396 and 3960 s are shown in (c) and (d) respectively. The 464 

development of α-Co patterns during solidification of the Co alloy is shown in (e)-(h). The 465 

corresponding temperatures and volume fractions are provided below each subfigure, where, (e) is 466 

captured at ~3 °C below the equilibrium liquidus temperature of the alloy and (h) at ~24 °C above the 467 

reported equilibrium eutectic temperature. The raw data of the reconstructed volume corresponding to 468 

(h) is shown in (i). Scale bar = 200 µm.  469 

Fig. 4. Competitive growth, a case of interaction between dendritic arms of the same grain (G1) is 470 

shown in (a-d). The corresponding temperatures are shown below each sub figure. The blue dendritic 471 

arm is intercepted by a tertiary arm from the large brown dendrite. A case of competition between two 472 

different dendritic grains (G2 and G4) captured at same temperatures in a sample space above G1 is 473 

shown in (e-h). Here, the growth of secondary arms of the (larger) orange grain in the middle of the 474 

dendrite are restricted by the secondary arms of grey grains.  Similarly, the secondary arms at the 475 

front end of G4 is restricted by G2. Scale bar = 200 µm. 476 

Fig. 5. The evolution of (a) volume fraction of α-Co phase during solidification of Co-18wt. % Hf 477 

alloy at a cooling rate of 0.05 °Cs-1. Lever rule and Scheil estimates are also provided and (b) 478 

evolution of volume normalised surface area, Sv, of α-Co dendritic patterns with temperature, on a 479 

single grain and sample scale.  480 

Fig. 6. The evolution of total volume normalized surface area of the solid during solicitation in the 481 

current Co-18wt. % Hf alloy is shown. The behaviour is interpreted in terms of Rath and Cahn 482 

equations. The observed/Rath plot of the α-Al dendritic structure during solidification in A1-10Cu as 483 

reported by Limodin et at.13 (black graph) is also provided along side for comparison.  484 



Fig. 1. (a) Schematic of the sample module with 
alumina sample mount and quartz encapsulated 
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sample, held in place at one end of the 
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Fig. 2. (a) Schematic of one half of environmental cell with heating and sample module and (b) schematic of 
the environmental cell setup at the I12 beamline of Diamond Light Source. Scale bar = 32.5 mm. 
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Fig. 3. The 3D evolution of dendritic patterns in Ni-14 wt. % Hf, Fe-11 wt. % Hf and Co-18 wt. % Hf alloys 
during solidification at a cooling rate of 0.05 °Cs-1 are shown. The interlocking FCC α-Ni dendritic patterns at 
495 and 1496 s after the start of solidification are shown in (a) and (b) respectively. The development of a single 
δ-Fe pattern during solidification via thickening, coarsening and coalescence mechanisms captured 396 and 3960 
s are shown in (c)  and (d) respectively. The development of α-Co patterns during solidification of the Co alloy is 
shown in (e)-(h). The corresponding temperatures and volume fractions are provided below each subfigure, 
where, (e) is captured at ~3 °C below the equilibrium liquidus temperature of the alloy and (h) at ~24 °C above 
the reported equilibrium eutectic temperature. The raw data of the reconstructed volume corresponding to (h) is 
shown in (i). Scale bar = 200 µm.  
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Fig. 4. Competitive growth, a case of interaction between dendritic arms of the same grain (G1) is shown 
in (a-d). The corresponding temperatures are shown below each sub figure. The blue dendritic arm is 
intercepted by a tertiary arm from the large brown dendrite. A case of competition between two different 
dendritic grains (G2 and G4) captured at same temperatures in a sample space above G1 is shown in (e-h). 
Here, the growth of secondary arms of the (larger) orange grain in the middle of the dendrite are restricted 
by the secondary arms of grey grains.  Similarly, the secondary arms at the front end of G4 is restricted by 
G2. Scale bar = 200 µm. 
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(a) 	

Fig. 5. The evolution of (a) volume fraction of α-
Co phase during solidification of Co-18wt. % Hf 
alloy at a cooling rate of 0.05 °Cs-1. Lever rule  and 
Scheil estimates are also provided and (b) 
evolution of volume normalised surface area, Sv, of 
α-Co dendritic patterns with temperature, on a 
single grain and sample scale.  
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Fig. 6. The evolution of total volume normalized 
surface area of the solid during solicitation in the 
current Co-18wt. % Hf alloy is shown. The 
behaviour is interpreted in terms of Rath and Cahn 
equations. The observed/Rath plot of the α-Al 
dendritic structure during solidification in A1-10Cu 
as reported by Limodin et at.13 (black graph) is also 
provided along side for comparison.  
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Supplementary 
Supplementary Movie M1 | Evolution of α-Co dendritic patterns: Sequence of 3D X-ray 

tomographic images showing the evolution of α-Co dendritic patterns in high contrast Co-18 wt. % Hf 

alloy during solidification at a cooling rate of 0.05 °Cs-1. The outer oxide ring is removed by image 

processing for the sake of visualization. 

Supplementary Movie M2 | 2D images of as-acquired tomograms: As acquired 2D time series 

showing the evolving morphology of α-Co dendritic patterns in high contrast Co-18 wt. % Hf alloy 

during solidification at a cooling rate of 0.05 °Cs-1. The white arrows indicate the location where an 

instance of competitive growth is occurring between two intersecting dendrites.  

Supplementary Note 1 | Estimation of partitioning coefficient: During solidification of an alloy, 

the separation of solute between solid and liquid phases is interpreted in terms of partitioning 

coefficient or the Scheil proportionality constant, k. A schematic of the hypoeutectic binary alloy 

system is shown in Fig. S1a, k is estimated by the ratio of the concentration of the solid (CS) to the 

concentration of liquid CL. Under equilibrium cooling conditions, the Co-Hf alloy system has a 

liquidus line with increasing slope as the eutectic composition is approached, as shown in Fig. S1b, 

after Ishida, K. and Nishizawa40. The Scheil proportionality constant k measured from the equilibrium 

phase diagram was found to be 0.11, however a k of 0.07 is used in the calculation so as to make the 

Scheil graph concurrent with the 0% solid fraction on the composition axis (Fig. 3a). 
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Supplementary Fig. S1. (a) Schematic of the hypoeutectic region of a binary phase diagram, where 

CL and CS  represent the concentration of liquid and solid respectively, C0 is the nominal composition 

of alloy of interest, TM the melting point of the pure species and TX is a temperature of interest. (b) 

hypoeutectic region of the the Co-Hf phase diagram, after Ishida and Nishizawa 30.  
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Supplementary Fig.  S2. Thermal modeling of (a) temperature distribution inside the furnace shown 

here in the front view, (b) temperature profile on the sample encapsulation (schematically shown in 

(c)).   

 

 

 

 

a 

b 

c 
10 15 20 25 30

600

800

1000

1200

1400

1600

Te
m

pe
ra

tu
re

, °
C

Temperature profile on encapsulated sample

1800 °C10 905

94 mm 

Temperature profile on encapsulated sample 


