8 research outputs found

    Modeling Amyloid-β Pathology in Alzheimer’s Disease Using the Arctic Mutation

    No full text
    The Arctic mutation in the Amyloid-β (Aβ) domain of the Amyloid-β precursor protein (APP) causes Alzheimer’s disease (AD) and confers unique biochemical characteristics to Aβ peptides. The aims of this thesis were to evaluate a transgenic model with the Arctic mutation, and to use it to gain new insights into the mechanisms of early (pre-plaque) and late-stage Aβ pathogenesis in AD. The Arctic mutation made Aβ more prone to aggregate, to accumulate in intracellular compartments and to form extracellular plaques when the models tg-ArcSwe and tg-Swe were compared. By inhibiting APP processing genetically or pharmacologically, the intraneuronal granular immunoreactivity with antibodies binding the Aβ domain was shown to largely represent Aβ, and not APP or APP-fragments. At two months of age, the intracellularly accumulated Aβ decreased rapidly, likely because it was still accessible to intracellular clearance. Extracellular Aβ deposits emerged at 5-6 months of age and the amyloid fibril structure was more compact than in tg-Swe. Moreover, Aβ deposits in tg-ArcSwe were more resistant to chemical extraction than those of established models carrying the Swedish APP mutation only, e.g. tg-Swe mice. The stability of deposits better reflects the biochemistry of senile plaques in AD. Thus, the tg-ArcSwe model may better predict the outcome of clinical trials, particularly therapies designed to enhance clearance of Aβ aggregates and deposits. Postmortem brain of Arctic mutation carriers contained extensive parenchymal plaque pathology. Differential immunostaining patterns with C- and N-terminal Aβ antibodies revealed a subset of plaques that were unique to the brains of Arctic mutation carriers. Aβ deposits in the cerebral vessel walls were congophilic and mainly composed of full-length Aβ. In contrast, N-terminally truncated Aβ was more prominent in the parenchymal plaques, all of which essentially lacked amyloid cores. A heterogeneous assembly of mutant and wild-type Aβ was shown to favor the formation of diffuse deposits in bitransgenic mice, and such mechanisms may at least partly explain observations of plaques lacking amyloid cores in postmortem Arctic mutant brain. In the bitransgenic mice, a low level of Arctic Aβ was sufficient to facilitate aggregation of wild-type Aβ. This observation, but also our findings of differences in amyloid fibril structure in tg-ArcSwe and tg-Swe, further highlights similarities between AD and prion disorders in which PrPsc refolds PrPc and facilitates fibril formation.(Faculty of medicine

    Modeling Amyloid-β Pathology in Alzheimer’s Disease Using the Arctic Mutation

    No full text
    The Arctic mutation in the Amyloid-β (Aβ) domain of the Amyloid-β precursor protein (APP) causes Alzheimer’s disease (AD) and confers unique biochemical characteristics to Aβ peptides. The aims of this thesis were to evaluate a transgenic model with the Arctic mutation, and to use it to gain new insights into the mechanisms of early (pre-plaque) and late-stage Aβ pathogenesis in AD. The Arctic mutation made Aβ more prone to aggregate, to accumulate in intracellular compartments and to form extracellular plaques when the models tg-ArcSwe and tg-Swe were compared. By inhibiting APP processing genetically or pharmacologically, the intraneuronal granular immunoreactivity with antibodies binding the Aβ domain was shown to largely represent Aβ, and not APP or APP-fragments. At two months of age, the intracellularly accumulated Aβ decreased rapidly, likely because it was still accessible to intracellular clearance. Extracellular Aβ deposits emerged at 5-6 months of age and the amyloid fibril structure was more compact than in tg-Swe. Moreover, Aβ deposits in tg-ArcSwe were more resistant to chemical extraction than those of established models carrying the Swedish APP mutation only, e.g. tg-Swe mice. The stability of deposits better reflects the biochemistry of senile plaques in AD. Thus, the tg-ArcSwe model may better predict the outcome of clinical trials, particularly therapies designed to enhance clearance of Aβ aggregates and deposits. Postmortem brain of Arctic mutation carriers contained extensive parenchymal plaque pathology. Differential immunostaining patterns with C- and N-terminal Aβ antibodies revealed a subset of plaques that were unique to the brains of Arctic mutation carriers. Aβ deposits in the cerebral vessel walls were congophilic and mainly composed of full-length Aβ. In contrast, N-terminally truncated Aβ was more prominent in the parenchymal plaques, all of which essentially lacked amyloid cores. A heterogeneous assembly of mutant and wild-type Aβ was shown to favor the formation of diffuse deposits in bitransgenic mice, and such mechanisms may at least partly explain observations of plaques lacking amyloid cores in postmortem Arctic mutant brain. In the bitransgenic mice, a low level of Arctic Aβ was sufficient to facilitate aggregation of wild-type Aβ. This observation, but also our findings of differences in amyloid fibril structure in tg-ArcSwe and tg-Swe, further highlights similarities between AD and prion disorders in which PrPsc refolds PrPc and facilitates fibril formation.(Faculty of medicine

    Modeling Amyloid-β Pathology in Alzheimer’s Disease Using the Arctic Mutation

    No full text
    The Arctic mutation in the Amyloid-β (Aβ) domain of the Amyloid-β precursor protein (APP) causes Alzheimer’s disease (AD) and confers unique biochemical characteristics to Aβ peptides. The aims of this thesis were to evaluate a transgenic model with the Arctic mutation, and to use it to gain new insights into the mechanisms of early (pre-plaque) and late-stage Aβ pathogenesis in AD. The Arctic mutation made Aβ more prone to aggregate, to accumulate in intracellular compartments and to form extracellular plaques when the models tg-ArcSwe and tg-Swe were compared. By inhibiting APP processing genetically or pharmacologically, the intraneuronal granular immunoreactivity with antibodies binding the Aβ domain was shown to largely represent Aβ, and not APP or APP-fragments. At two months of age, the intracellularly accumulated Aβ decreased rapidly, likely because it was still accessible to intracellular clearance. Extracellular Aβ deposits emerged at 5-6 months of age and the amyloid fibril structure was more compact than in tg-Swe. Moreover, Aβ deposits in tg-ArcSwe were more resistant to chemical extraction than those of established models carrying the Swedish APP mutation only, e.g. tg-Swe mice. The stability of deposits better reflects the biochemistry of senile plaques in AD. Thus, the tg-ArcSwe model may better predict the outcome of clinical trials, particularly therapies designed to enhance clearance of Aβ aggregates and deposits. Postmortem brain of Arctic mutation carriers contained extensive parenchymal plaque pathology. Differential immunostaining patterns with C- and N-terminal Aβ antibodies revealed a subset of plaques that were unique to the brains of Arctic mutation carriers. Aβ deposits in the cerebral vessel walls were congophilic and mainly composed of full-length Aβ. In contrast, N-terminally truncated Aβ was more prominent in the parenchymal plaques, all of which essentially lacked amyloid cores. A heterogeneous assembly of mutant and wild-type Aβ was shown to favor the formation of diffuse deposits in bitransgenic mice, and such mechanisms may at least partly explain observations of plaques lacking amyloid cores in postmortem Arctic mutant brain. In the bitransgenic mice, a low level of Arctic Aβ was sufficient to facilitate aggregation of wild-type Aβ. This observation, but also our findings of differences in amyloid fibril structure in tg-ArcSwe and tg-Swe, further highlights similarities between AD and prion disorders in which PrPsc refolds PrPc and facilitates fibril formation.(Faculty of medicine

    Observations in APP Bitransgenic Mice Suggest that Diffuse and Compact Plaques Form via Independent Processes in Alzheimer's Disease

    Get PDF
    Studies of familial Alzheimer's disease suggest that misfolding and aggregation of amyloid-β (Aβ) peptides initiate the pathogenesis. The Arctic mutation of Aβ precursor protein (APP) results in AD, and Arctic Aβ is more prone to form Aβ protofibrils and extracellular deposits. Herein is demonstrated that the burden of diffuse Aβ deposits but not compact plaques is increased when tg-Swe mice are crossed with tg-ArcSwe mice synthesizing low levels of Arctic Aβ. The diffuse deposits in bitransgenic mice, which contain primarily wild-type Aβ42, accumulate in regions both with and without transgene expression. However, APP processing, when compared with tg-Swe, remains unchanged in young bitransgenic mice, whereas wild-type Aβ42 aggregation is accelerated and fibril architecture is altered in vitro and in vivo when a low level of Arctic Aβ42 is introduced. Thus, the increased number of diffuse deposits is likely due to physical interactions between Arctic Aβ and wild-type Aβ42. The selective increase of a single type of parenchymal Aβ deposit suggests that different pathways lead to formation of diffuse and compact plaques. These findings could have general implications for Alzheimer's disease pathogenesis and particular relevance to patients heterozygous for the Arctic APP mutation. Moreover, it further illustrates how Aβ neuropathologic features can be manipulated in vivo by mechanisms similar to those originally conceptualized in prion research

    The Arctic AβPP mutation leads to Alzheimer’s disease pathology with highly variable topographic deposition of differentially truncated Aβ

    Get PDF
    Background The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precursor protein gene causes an autosomal dominant disease with clinical picture of typical Alzheimer’s disease. Here we report the special character of Arctic AD neuropathology in four deceased patients. Results Aβ deposition in the brains was wide-spread (Thal phase 5) and profuse. Virtually all parenchymal deposits were composed of non-fibrillar, Congo red negative Aβ aggregates. Congo red only stained angiopathic vessels. Mass spectrometric analyses showed that Aβ deposits contained variably truncated and modified wild type and mutated Aβ species. In three of four Arctic AD brains, most cerebral cortical plaques appeared targetoid with centres containing C-terminally (beyond aa 40) and variably N-terminally truncated Aβ surrounded by coronas immunopositive for Aβx-42. In the fourth patient plaque centres contained almost no Aβ making the plaques ring-shaped. The architectural pattern of plaques also varied between different anatomic regions. Tau pathology corresponded to Braak stage VI, and appeared mainly as delicate neuropil threads (NT) enriched within Aβ plaques. Dystrophic neurites were scarce, while neurofibrillary tangles were relatively common. Neuronal perikarya within the Aβ plaques appeared relatively intact. Conclusions In Arctic AD brain differentially truncated abundant Aβ is deposited in plaques of variable numbers and shapes in different regions of the brain (including exceptional targetoid plaques in neocortex). The extracellular non-fibrillar Aβ does not seem to cause overt damage to adjacent neurons or to induce formation of neurofibrillary tangles, supporting the view that intracellular Aβ oligomers are more neurotoxic than extracellular Aβ deposits. However, the enrichment of NTs within plaques suggests some degree of intra-plaque axonal damage including accumulation of hp-tau, which may impair axoplasmic transport, and thereby contribute to synaptic loss. Finally, similarly as the cotton wool plaques in AD resulting from exon 9 deletion in the presenilin-1 gene, the Arctic plaques induced only modest glial and inflammatory tissue reaction
    corecore