52 research outputs found

    Depression : genetic, epigenetic and DNA biobank studies

    Get PDF
    Depression is a disease that has an estimated lifetime prevalence of ~15% and a heritability of ~36%. There is support for a heterogeneous etiology of depression, which includes a) numerous genetic loci, b) various epigenetic contributors, and c) different environmental risk factors. The first five papers included in the present thesis investigate these three disease-contributing categories by studying a) the association of P11, NPY, MAOA and NR3C1, with depression, b) epigenetic marks like DNA methylation and histone modifications, and c) environmental influences, like childhood adversities, that may interact with certain genotypes and modulate the risk of depression. In two of these studies, there is also an attempt to pinpoint some targets and mechanisms of a current antidepressant drug and to examine the molecular effects of novel potential therapeutics. The thesis also includes a paper which investigates reasons behind public refusal to consent to participation in a human genetics repository; a so- called DNA biobank. Achieving high participation rates in DNA biobanks is a prerequisite for the identification of new genetic loci, already known to have small effect sizes, which are associated with complex disorders like depression. However, as addressed in this last paper, solidarity (i.e. the participation in research for the common good) seems to be at stake for DNA biobanks and is an issue that needs to be raised both by the scientific community and national policy-makers. Specifically, the data of this thesis 1) confirm a genetic association between NPY and depression, 2) show the existence of a MAOA x childhood-adversity interaction that increases the risk of depression, 3) demonstrate DNA methylation differences of P11 in depression-like states and of MAOA in depression, 4) verify the effect of childhood trauma on NR3C1 DNA methylation, 5) provide new insights into how Npy is transcriptionally regulated via an allele-specific epigenetic programming and describe an alternatively spliced Npy mRNA variant, 6) suggest that escitalopram (a selective serotonin reuptake inhibitor; SSRI) may exert part of its antidepressant function by affecting the expression of DNA methyltransferases (DNMTs) and DNA methylation levels, 7) support the antidepressant effect of running, and 8) provide awareness of the ethical problems posed by large-scale genomic studies that rely on DNA biobanking

    MicroRNA 101b Is Downregulated in the Prefrontal Cortex of a Genetic Model of Depression and Targets the Glutamate Transporter SLC1A1 (EAAT3) in Vitro

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small regulatory molecules that cause translational repression by base pairing with target mRNAs. Cumulative evidence suggests that changes in miRNA expression may in part underlie the pathophysiology and treatment of neuropsychiatric disorders, including major depressive disorder (MDD). METHODS: A miRNA expression assay that can simultaneously detect 423 rat miRNAs (miRBase v.17) was used to profile the prefrontal cortex (PFC) of a genetic rat model of MDD (the Flinders Sensitive Line [FSL]) and the controls, the Flinders Resistant Line (FRL). Gene expression data from the PFC of FSL/FRL animals (GEO accession no. GSE20388) were used to guide mRNA target selection. Luciferase reporter assays were used to verify miRNA targets in vitro. RESULTS: We identified 23 miRNAs that were downregulated in the PFC of the FSL model compared with controls. Interestingly, one of the identified miRNAs (miR-101b) is highly conserved between rat and human and was recently found to be downregulated in the PFC of depressed suicide subjects. Using a combination of in silico and in vitro analyses, we found that miR-101b targets the neuronal glutamate transporter SLC1A1 (also known as EAAC1 or EAAT3). Accordingly, both mRNA and protein levels of SLC1A1 were found to be upregulated in the PFC of the FSL model. CONCLUSIONS: Besides providing a list of novel miRNAs associated with depression-like states, this preclinical study replicated the human association of miR-101 with depression. In addition, since one of the targets of miR-101b appears to be a glutamate transporter, our preclinical data support the hypothesis of a glutamatergic dysregulation being implicated in the etiology of depression

    Characterization of a Recombinant Adeno-Associated Virus Type 2 Reference Standard Material

    Get PDF
    A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus–free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18 × 1011 particles/ml; 95% confidence interval [CI], 7.89 × 1011 to 1.05 × 1012 particles/ml), vector genomes ({X}, 3.28 × 1010 vector genomes/ml; 95% CI, 2.70 × 1010 to 4.75 × 1010 vector genomes/ml), transducing units ({X}, 5.09 × 108 transducing units/ml; 95% CI, 2.00 × 108 to 9.60 × 108 transducing units/ml), and infectious units ({X}, 4.37 × 109 TCID50 IU/ml; 95% CI, 2.06 × 109 to 9.26 × 109 TCID50 IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed

    Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene

    No full text
    This article has a correction. Please see: Erratum - April 01, 2015Background: Epigenetic drugs like sodium butyrate (NaB) show antidepressant-like effects in preclinical studies, but the exact molecular mechanisms of the antidepressant effects remain unknown. While research using NaB has mainly focused on its role as a histone deacetylase inhibitor (HDACi), there is also evidence that NaB affects DNA methylation. Methods: The purpose of this study was to examine NaB’s putative antidepressant-like efficacy in relation to DNA methylation changes in the prefrontal cortex of an established genetic rat model of depression (the Flinders Sensitive Line [FSL]) and its controls (the Flinders Resistant Line). Results: The FSL rats had lower levels of ten-eleven translocation methylcytosine dioxygenase 1 (TET1), which catalyzes the conversion of DNA methylation to hydroxymethylation. As indicated by the behavioral despair test, chronic administration of NaB had antidepressant-like effects in the FSL and was accompanied by increased levels of TET1. The TET1 upregulation was also associated with an increase of hydroxymethylation and a decrease of methylation in brain-derived neurotrophic factor (Bdnf), a gene associated with neurogenesis and synaptic plasticity. These epigenetic changes were associated with a corresponding BDNF overexpression. Conclusions: Our data support the antidepressant efficacy of HDACis and suggest that their epigenetic effects may also include DNA methylation changes that are mediated by demethylation-facilitating enzymes like TET1Karolinska Institutet’s Faculty Funds, the Swedish Research Council (grant numbers 2010–3631 CL, 10414 AAM), the Fredrik and Ingrid Thurings Foundation, the regional agreement on medical training and clinical research (ALF) between the Stockholm County Council and Karolinska Institutet (CL), the Danish Medical Research Council, and the Lundbeck foundatio

    Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research

    No full text
    Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes

    Functional Variation in the <i>FAAH</i> Gene Is Directly Associated with Subjective Well-Being and Indirectly Associated with Problematic Alcohol Use

    No full text
    Fatty acid amide hydrolase (FAAH) is an enzyme that degrades anandamide, an endocannabinoid that modulates mesolimbic dopamine release and, consequently, influences states of well-being. Despite these known interactions, the specific role of FAAH in subjective well-being remains underexplored. Since well-being is a dynamic trait that can fluctuate over time, we hypothesized that we could provide deeper insights into the link between FAAH and well-being using longitudinal data. To this end, we analyzed well-being data collected three years apart using the WHO (Ten) Well-Being Index and genotyped a functional polymorphism in the FAAH gene (rs324420, Pro129Thr) in a sample of 2822 individuals. We found that the A-allele of rs324420, which results in reduced FAAH activity and elevated anandamide levels, was associated with lower well-being scores at both time points (Wave I, B: −0.52, p = 0.007; Wave II, B: −0.41, p = 0.03, adjusted for age and sex). A subsequent phenome-wide association study (PheWAS) affirmed our well-being findings in the UK Biobank (N = 126,132, alternative C-allele associated with elevated happiness, p = 0.008) and revealed an additional association with alcohol dependence. In our cohort, using lagged longitudinal mediation analyses, we uncovered evidence of an indirect association between rs324420 and problematic alcohol use (AUDIT-P) through the pathway of lower well-being (indirect effect Boot: 0.015, 95% CI [0.003, 0.030], adjusted for AUDIT in Wave I). We propose that chronically elevated anandamide levels might influence disruptions in the endocannabinoid system—a biological contributor to well-being—which could, in turn, contribute to increased alcohol intake, though multiple factors may be at play. Further genetic studies and mediation analyses are needed to validate and extend these findings

    Deep brain stimulation of the nucleus accumbens shell attenuates cocaine withdrawal but increases cocaine self-administration, cocaine-induced locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala in male cocaine-dependent rats

    No full text
    BackgroundCocaine addiction is a major public health problem. Despite decades of intense research, no effective treatments are available. Both preclinical and clinical studies strongly suggest that deep brain stimulation of the nucleus accumbens (NAcc) is a viable target for the treatment of cocaine use disorder (CUD).ObjectiveAlthough previous studies have shown that DBS of the NAcc decreases cocaine seeking and reinstatement, the effects of DBS on cocaine intake in cocaine-dependent animals have not yet been investigated.MethodsRats were made cocaine dependent by allowing them to self-administer cocaine in extended access conditions (6&nbsp;h/day, 0.5&nbsp;mg/kg/infusion). The effects of monophasic bilateral high-frequency DBS (60 μs pulse width and 130&nbsp;Hz frequency) stimulation with a constant current of 150&nbsp;μA of the NAcc shell on cocaine intake was then evaluated. Furthermore, cocaine-induced locomotor activity, irritability-like behavior during cocaine abstinence, and the levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits 1 and 2 (GluR1/GluA1 and GluR2/GluA2) after DBS were investigated.ResultsContrary to our expectations, DBS of the NAcc shell induced a slight increase in cocaine self-administration, and increased cocaine-induced locomotion after extended access of cocaine self-administration. In addition, DBS decreased irritability-like behavior 18&nbsp;h into cocaine withdrawal. Finally, DBS increased both cytosolic and synaptosomal levels of GluR1, but not GluR2, in the central nucleus of the amygdala but not in other brain regions.ConclusionsThese preclinical results with cocaine-dependent animals support the use of high-frequency DBS of the NAcc shell as a therapeutic approach for the treatment of the negative emotional state that emerges during cocaine abstinence, but also demonstrate that DBS does not decrease cocaine intake in active, long-term cocaine users. These data, together with the existing evidence that DBS of the NAcc shell reduces the reinstatement of cocaine seeking in abstinent animals, suggest that NAcc shell DBS may be beneficial for the treatment of the negative emotional states and craving during abstinence, although it may worsen cocaine use if individuals continue drug use

    Physical exercise is associated with a reduction in plasma levels of fractalkine, TGF-beta 1, eotaxin-1 and IL-6 in younger adults with mobility disability

    Get PDF
    Mobility disability (MD) refers to substantial limitations in life activities that arise because of movement impairments. Although MD is most prevalent in older individuals, it can also affect younger adults. Increasing evidence suggests that inflammation can drive the development of MD and may need to be targeted for MD prevention. Physical exercise has anti-inflammatory properties and has been associated with MD prevention. However, no studies to date have examined whether exercise interventions affect the peripheral inflammatory status in younger adults with MD. To this end, we used blood samples from young and middle-aged adults with MD (N = 38; median age = 34 years) who participated in a 12-week intervention that included aerobic and resistance exercise training. A pre-post assessment of inflammatory biomarkers was conducted in plasma from two timepoints, i.e., before the exercise trial and at follow-up (3-7 days after the last exercise session). We successfully measured 15 inflammatory biomarkers and found that exercise was associated with a significant reduction in levels of soluble fractalkine, transforming growth factor beta 1 (TGF-beta 1), eotaxin-1 and interleukin (IL) 6 (corrected alpha = 0.004). We also found significant male-specific effects of exercise on (i) increasing IL-16 and (ii) decreasing vascular endothelial growth factor-A (VEGF-A). In line with our results, previous studies have also found that exercise can reduce levels of TGF-beta 1, eotaxin-1 and IL-6. However, our finding that exercise reduces plasma levels of fractalkine in younger adults with MD, as well as the sex-dependent findings, have not been previously reported and warrant replication in larger cohorts. Given the suggested role of inflammation in promoting MD development, our study provides additional support for the use of physical exercise as a treatment modality for MD
    • …
    corecore