1,764 research outputs found

    Capture numbers and islands size distributions in models of submonolayer surface growth

    Full text link
    The capture numbers entering the rate equations (RE) for submonolayer film growth are determined from extensive kinetic Monte Carlo (KMC) simulations for simple representative growth models yielding point, compact, and fractal island morphologies. The full dependence of the capture numbers on island size, and on both the coverage and the D/F ratio between the adatom diffusion coefficient D and deposition rate F is determined. Based on this information, the RE are solved to give the RE island size distribution (RE-ISD). The RE-ISDs are shown to agree well with the corresponding KMC-ISDs for all island morphologies. For compact morphologies, however, this agreement is only present for coverages smaller than about 5% due to a significantly increased coalescence rate compared to fractal morphologies. As found earlier, the scaled KMC-ISDs as a function of scaled island size approach, for fixed coverage, a limiting curve for D/F going to infinity. Our findings provide evidence that the limiting curve is independent of the coverage for point islands, while the results for compact and fractal island morphologies indicate a dependence on the coverage.Comment: 13 pages, 12 figure

    Island size distributions in submonolayer growth: successful prediction by mean field theory with coverage dependent capture numbers

    Full text link
    We show that mean-field rate equations for submonolayer growth can successfully predict island size distributions in the pre-coalescence regime if the full dependence of capture numbers on both the island size and the coverage is taken into account. This is demonstrated by extensive Kinetic Monte Carlo simulations for a growth kinetics with hit and stick aggregation. A detailed analysis of the capture numbers reveals a nonlinear dependence on the island size for small islands. This nonlinearity turns out to be crucial for the successful prediction of the island size distribution and renders an analytical treatment based on a continuum limit of the mean-field rate equations difficult.Comment: 4 pages, 4 figue

    An Immune Evasion Mechanism for Spirochetal Persistence in Lyme Borreliosis

    Get PDF
    Borrelia burgdorferi, the Lyme disease spirochete, persistently infects mammalian hosts despite the development of strong humoral responses directed against the pathogen. Here we describe a novel mechanism of immune evasion by B. burgdorferi. In immunocompetent mice, spirochetes that did not express ospC (the outer-surface protein C gene) were selected within 17 d after inoculation, concomitantly with the emergence of anti-OspC antibody. Spirochetes with no detectable OspC transcript that were isolated from immunocompetent mice reexpressed ospC after they were either cultured in vitro or transplanted to naive immunocompetent mice, but not in OspC-immunized mice. B. burgdorferi persistently expressed ospC in severe combined immune-deficient (SCID) mice. Passive immunization of B. burgdorferi–infected SCID mice with an anti-OspC monoclonal antibody selectively eliminated ospC-expressing spirochetes but did not clear the infection. OspC-expressing spirochetes reappeared in SCID mice after the anti-OspC antibody was eliminated. We submit that selection of surface-antigen nonexpressers is an immune evasion mechanism that contributes to spirochetal persistence

    Lipoproteins, not lipopolysaccharide, are the key mediators of the pro-inflammatory response elicited by heat-killed Brucella abortus.

    Get PDF
    Inflammation is a hallmark of brucellosis. Although Brucella abortus, one of the disease?s etiologic agents, possesses cytokine-stimulatory properties, the mechanism by which this bacterium triggers a proinflammatory response is not known. We examined the mechanism whereby heat-killed B. abortus (HKBA), as well as its LPS, induces production of inflammatory cytokines in monocytes/macrophages. Polymyxin B, a specific inhibitor of LPS activity, did not inhibit the production of TNF-- and IL-6-induced HKBA in the human monocytic cell line THP-1. HKBA induced the production of these cytokines in peritoneal macrophages of both C3H/HeJ and C3H/HeN mice, whereas B. abortus LPS only stimulated cells from C3H/HeN mice. Anti-TLR2 Ab, but not anti-TLR4 Ab, blocked HKBAmediated TNF-and IL-6 production in THP-1 cells. Because bacterial lipoproteins, a TLR2 ligand, have potent inherent stimulatory properties, we investigated the capacity of two B. abortus lipoproteins, outer membrane protein 19 (Omp19) and Omp16, to elicit a proinflammatory response. Lipidated (L)-Omp16 and L-Omp19, but not their unlipidated forms, induced the secretion of TNF-, IL-6, IL-10, and IL-12 in a time- and dose-dependent fashion. Preincubation of THP-1 cells with anti-TLR2 Ab blocked L-Omp19-mediated TNF-and IL-6 production. Together, these results entail a mechanism whereby B. abortus can stimulate cells from the innate immune system and induce cytokine-mediated inflammation in brucellosis. We submit that LPS is not the cause of inflammation in brucellosis; rather, lipoproteins of this organism trigger the production of proinflammatory cytokines, and TLR2 is involved in this process.Fil: Giambartolomei, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Zwerdling, Astrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Cassataro, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Bruno, Laura Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Philipp, Mario T.. University of Tulane; Estados Unido

    Biochemical characterization of trans-sialidase TS1 variants from Trypanosoma congolense

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal African trypanosomiasis, sleeping sickness in humans and Nagana in cattle, is a resurgent disease in Africa caused by <it>Trypanosoma </it>parasites. Trans-sialidases expressed by trypanosomes play an important role in the infection cycle of insects and mammals. Whereas trans-sialidases of other trypanosomes like the American <it>T. cruzi </it>are well investigated, relatively little research has been done on these enzymes of <it>T. congolense</it>.</p> <p>Results</p> <p>Based on a partial sequence and an open reading frame in the WTSI database, DNA sequences encoding for eleven <it>T. congolense </it>trans-sialidase 1 variants with 96.3% overall amino acid identity were amplified. Trans-sialidase 1 variants were expressed as recombinant proteins, isolated and assayed for trans-sialylation activity. The purified proteins produced α2,3-sialyllactose from lactose by desialylating fetuin, clearly demonstrating their trans-sialidase activity. Using an HPLC-based assay, substrate specificities and kinetic parameters of two variants were characterized in detail indicating differences in substrate specificities for lactose, fetuin and synthetic substrates. Both enzymes were able to sialylate asialofetuin to an extent, which was sufficient to reconstitute binding sites for Siglec-4. A mass spectrometric analysis of the sialylation pattern of glycopeptides from fetuin revealed clear but generally similar changes in the sialylation pattern of the <it>N</it>-glycans on fetuin catalyzed by the trans-sialidases investigated.</p> <p>Conclusions</p> <p>The identification and characterization of a trans-sialidase gene family of the African parasite <it>T. congolense </it>has opened new perspectives for investigating the biological role of these enzymes in Nagana and sleeping sickness. Based on this study it will be interesting to address the expression pattern of these genes and their activities in the different stages of the parasite in its infection cycle. Furthermore, these trans-sialidases have the biotechnological potential to be used for enzymatic modification of sialylated glycoconjugates.</p

    Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    Full text link
    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven with a constant rate. The time evolution of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the performed work during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility.Comment: 21 pages, 7 figure

    Antigenic Conservation of an Immunodominant Invariable Region of the VlsE Lipoprotein among European Pathogenic Genospecies of Borrelia burgdorferi SL

    Get PDF
    Lyme disease is caused by genetically divergent spirochetes, including 3 pathogenic genospecies: Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii. Serodiagnosisis complicated by this genetic diversity. A synthetic peptide (C6), based on the 26-mer invariable region (IR6) of the variable surface antigen of B. burgdorferi (VlsE), was used as ELISA antigen, to test serum samples collected from mice experimentally infected with the 3 genospecies and from European patients with Lyme disease. Regardless of the infecting strains, mice produced a strong antibody response to C6, which indicates that IR6 is antigenically conserved among the pathogenic genospecies. Twenty of 23 patients with culture-confirmed erythema migrans had a detectable antibody response to C6. A sensitivity of 95.2% was achieved, with serum samples collected from patients with well-defined acrodermatitis chronica atrophicans. Fourteen of 20 patients with symptoms of late Lyme disease also had a positive anti-IR6 ELISA. Thus, it is possible that C6 may be used to serodiagnose Lyme disease universall

    Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    Get PDF
    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis
    corecore