3,699 research outputs found

    Spontaneous bacterial peritonitis:the clinical challenge of a leaky gut and a cirrhotic liver

    Get PDF
    Spontaneous bacterial peritonitis (SBP) is a frequent, life-threatening bacterial infection in patients with liver cirrhosis and ascites. Portal hypertension leads to increased bacterial translocation from the intestine. Failure to eliminate invading pathogens due to immune defects associated with advanced liver disease on the background of genetic predisposition may result in SBP. The efficacy of antibiotic treatment and prophylaxis has declined due to the spread of multi-resistant bacteria. Patients with nosocomial SBP and with prior antibiotic treatment are at a particularly high risk for infection with resistant bacteria. Therefore, it is important to adapt empirical treatment to these risk factors and to the local resistance profile. Rifaximin, an oral, non-absorbable antibiotic, has been proposed to prevent SBP, but may be useful only in a subset of patients. Since novel antibiotic classes are lacking, we have to develop prophylactic strategies which do not induce bacterial resistance. Farnesoid X receptor agonists may be a candidate, but so far, clinical studies are not available. New diagnostic tests which can be carried out quickly at the patient’s site and provide additional prognostic information would be helpful. Furthermore, we need tools to predict antibiotic resistance in order to tailor first-line antibiotic treatment of spontaneous bacterial peritonitis to the individual patient and to reduce mortality

    Risk of symptomatic heterotopic ossification following plate osteosynthesis in multiple trauma patients: an analysis in a level-1 trauma centre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Symptomatic heterotopic ossification (HO) in multiple trauma patients may lead to follow up surgery, furthermore the long-term outcome can be restricted. Knowledge of the effect of surgical treatment on formation of symptomatic heterotopic ossification in polytrauma is sparse. Therefore, we test the effects of surgical treatment (plate osteosynthesis or intramedullary nailing) on the formation of heterotopic ossification in the multiple trauma patient.</p> <p>Methods</p> <p>We retrospectively analysed prospectively documented data of blunt multiple trauma patients with long bone fractures which were treated at our level-1 trauma centre between 1997 and 2005. Patients were distributed to 2 groups: Patients treated by intramedullary nails (group IMN) or plate osteosynthesis (group PLATE) were compared. The expression and extension of symptomatic heterotopic ossifications on 3-6 months follow-up x-rays in antero-posterior (ap) and lateral views were classified radiologically and the maximum expansion was measured in millimeter (mm). Additionally, ventilation time, prophylactic medication like indomethacine and incidence and correlation of head injuries were analysed.</p> <p>Results</p> <p>101 patients were included in our study, 79 men and 22 women. The fractures were treated by intramedullary nails (group IMN n = 50) or plate osteosynthesis (group PLATE n = 51). Significantly higher radiologic ossification classes were detected in group PLATE (2.9 ± 1.3) as compared to IMN (2.2 ± 1.1; p = 0.013). HO size in mm ap and lateral showed a tendency towards larger HOs in the PLATE group. Additionally PLATE group showed a higher rate of articular fractures (63% vs. 28% in IMN) while IMN demonstrated a higher rate of diaphyseal fractures (72% vs. 37% in PLATE; p = 0.003). Ventilation time, indomethacine and incidence of head injuries showed no significant difference between groups.</p> <p>Conclusion</p> <p>Fracture care with plate osteosynthesis in polytrauma patients is associated with larger formations of symptomatic heterotopic ossifications (HO) while intramedullary nailing was associated with a higher rate of remote HO. For future fracture care of multiply injured patients these facts may be considered by the responsible surgeon.</p

    High-sensitivity troponin assays in the evaluation of patients with acute chest pain in the emergency department

    Get PDF
    Evaluating patients with acute chest pain presenting to the emergency department remains an ongoing challenge. The spectrum of etiologies in acute chest pain ranges from minor disease entities to life-threatening diseases, such as pulmonary embolism, acute aortic dissection or acute myocardial infarction (MI). The diagnosis of acute MI is usually made integrating the triad of patient history and clinical presentation, readings of 12-lead ECG and measurement of cardiac troponins (cTn). Introduction of high-sensitivity cTn assays substantially increases sensitivity to identify patients with acute MI even at the time of presentation to the emergency department at the cost of specificity. However, the proportion of patients presenting with cTn positive, non-vascular cardiac chest pain triples with the implementation of new sensitive cTn assays increasing the difficulty for the emergency physician to identify those patients who are at need for invasive diagnostics. The main objectives of this mini-review are 1) to discuss elements of disposition decision made by the emergency physician for the evaluation of chest pain patients, 2) to summarize recent advances in assay technology and relate these findings into the clinical context, and 3) to discuss possible consequences for the clinical work and suggest an algorithm for the clinical evaluation of chest pain patients in the emergency departmen

    A technical description of the Balloon Lidar Experiment (BOLIDE)

    Get PDF
    The Balloon Lidar Experiment (BOLIDE) was the first high-power lidar flown and operated successfully onboard a balloon platform. As part of the PMC Turbo payload, the instrument acquired high resolution backscatter profiles of Polar Mesospheric Clouds (PMCs) from an altitude of ∼38 km during its maiden ∼6 day flight from Esrange, Sweden, to Northern Canada in July 2018. We describe the BOLIDE instrument and its development and report on the predicted and actual in-flight performance. Although the instrument suffered from excessively high background noise, we were able to detect PMCs with a volume backscatter coefficient as low as 0.6 × 10^−10 m^−1 sr^−1 at a vertical resolution of 100 m and a time resolution of 30 s

    A combinational approach of multilocus sequence typing and other molecular typing methods in unravelling the epidemiology of Erysipelothrix rhusiopathiae strains from poultry and mammals

    Get PDF
    Erysipelothrix rhusiopathiae infections re-emerged as a matter of great concern particularly in the poultry industry. In contrast to porcine isolates, molecular epidemiological traits of avian E. rhusiopathiae isolates are less well known. Thus, we aimed to (i) develop a multilocus sequence typing (MLST) scheme for E. rhusiopathiae, (ii) study the congruence of strain grouping based on pulsed-field gel electrophoresis (PFGE) and MLST, (iii) determine the diversity of the dominant immunogenic protein SpaA, and (iv) examine the distribution of genes putatively linked with virulence among field isolates from poultry (120), swine (24) and other hosts (21), including humans (3). Using seven housekeeping genes for MLST analysis we determined 72 sequence types (STs) among 165 isolates. This indicated an overall high diversity, though 34.5% of all isolates belonged to a single predominant ST-complex, STC9, which grouped strains from birds and mammals, including humans, together. PFGE revealed 58 different clusters and congruence with the sequence-based MLST-method was not common. Based on polymorphisms in the N-terminal hyper-variable region of SpaA the isolates were classified into five groups, which followed the phylogenetic background of the strains. More than 90% of the isolates harboured all 16 putative virulence genes tested and only intI, encoding an internalin-like protein, showed infrequent distribution. MLST data determined E. rhusiopathiae as weakly clonal species with limited host specificity. A common evolutionary origin of isolates as well as shared SpaA variants and virulence genotypes obtained from avian and mammalian hosts indicates common reservoirs, pathogenic pathways and immunogenic properties of the pathogen

    A multimodal neuroimaging classifier for alcohol dependence

    Get PDF
    With progress in magnetic resonance imaging technology and a broader dissemination of state-of-the-art imaging facilities, the acquisition of multiple neuroimaging modalities is becoming increasingly feasible. One particular hope associated with multimodal neuroimaging is the development of reliable data-driven diagnostic classifiers for psychiatric disorders, yet previous studies have often failed to find a benefit of combining multiple modalities. As a psychiatric disorder with established neurobiological effects at several levels of description, alcohol dependence is particularly well-suited for multimodal classification. To this aim, we developed a multimodal classification scheme and applied it to a rich neuroimaging battery (structural, functional task-based and functional resting-state data) collected in a matched sample of alcohol-dependent patients (N = 119) and controls (N = 97). We found that our classification scheme yielded 79.3% diagnostic accuracy, which outperformed the strongest individual modality - grey-matter density - by 2.7%. We found that this moderate benefit of multimodal classification depended on a number of critical design choices: a procedure to select optimal modality-specific classifiers, a fine-grained ensemble prediction based on cross-modal weight matrices and continuous classifier decision values. We conclude that the combination of multiple neuroimaging modalities is able to moderately improve the accuracy of machine-learning-based diagnostic classification in alcohol dependence

    A multimodal neuroimaging classifier for alcohol dependence

    Get PDF
    With progress in magnetic resonance imaging technology and a broader dissemination of state-of-the-art imaging facilities, the acquisition of multiple neuroimaging modalities is becoming increasingly feasible. One particular hope associated with multimodal neuroimaging is the development of reliable data-driven diagnostic classifiers for psychiatric disorders, yet previous studies have often failed to find a benefit of combining multiple modalities. As a psychiatric disorder with established neurobiological effects at several levels of description, alcohol dependence is particularly well-suited for multimodal classification. To this aim, we developed a multimodal classification scheme and applied it to a rich neuroimaging battery (structural, functional task-based and functional resting-state data) collected in a matched sample of alcohol-dependent patients (N = 119) and controls (N = 97). We found that our classification scheme yielded 79.3% diagnostic accuracy, which outperformed the strongest individual modality - grey-matter density - by 2.7%. We found that this moderate benefit of multimodal classification depended on a number of critical design choices: a procedure to select optimal modality-specific classifiers, a fine-grained ensemble prediction based on cross-modal weight matrices and continuous classifier decision values. We conclude that the combination of multiple neuroimaging modalities is able to moderately improve the accuracy of machine-learning-based diagnostic classification in alcohol dependence
    • …
    corecore