27 research outputs found
Opioid receptors in GtoPdb v.2021.3
Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP. [121, 100, 91]. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [294], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone, however only for the μ receptor
Opioid receptors in GtoPdb v.2023.1
Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP [124, 101, 92]. However the acronyms MOR, DOR and KOR are still widely used in the literature. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [304], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone. The majority of clinically used opiates are relatively selective μ agonists or partial agonists, though there are some μ/κ compounds, such as butorphanol, in clinical use. κ opioid agonists, such as the alkaloid nalfurafine and the peripherally acting peptide difelikefalin, are in clinical use for itch
Opioid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP. [116, 96, 88]. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [282], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone, however only for the μ receptor
Recommended from our members
Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks
无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216
Effect of Hypotension and Dobutamine on Gastrointestinal Microcirculations of Healthy, Anesthetized Horses
Horses undergoing abdominal exploratory surgery are at risk of hypotension and hypoperfusion. Normal mean arterial pressure is used as a surrogate for adequate tissue perfusion. However, measures of systemic circulation may not be reflective of microcirculation. This study measured the mean arterial pressure, cardiac index, lactate, and four microcirculatory indices in six healthy, anesthetized adult horses undergoing elective laparotomies. The microcirculatory parameters were measured at three different sites along the gastrointestinal tract (oral mucosa, colonic serosa, and rectal mucosa) with dark-field microscopy. All macro- and microcirculatory parameters were obtained when the horses were normotensive, hypotensive, and when normotension returned following treatment with dobutamine. Hypotension was induced with increases in inhaled isoflurane. The horses successfully induced into hypotension did not demonstrate consistent, expected changes in systemic perfusion or microvascular perfusion parameters at any of the three measured gastrointestinal sites. Normotension was successfully restored with the use of dobutamine, while the systemic perfusion and microvascular perfusion parameters remained relatively unchanged. These findings suggest that the use of mean arterial pressure to make clinical decisions regarding perfusion may or may not be accurate
silx-kit/pyFAI: pyFAI-2024.01
<ul>
<li>Possibility to define the detector orientation:<ul>
<li>It is the position of the origin of the detector at any of the 4 corner of the image</li>
<li>Uses the EXIF nomenclature where pyFAI's (default) orientation is tagged 3</li>
<li>Offers compatibility with calibration made by Diotas (where orientation=2 since images are flipped)</li>
<li>Expose the feature in the calib2 GUI for custom detectors.</li>
<li>Tutorial on the usage</li>
<li>New sub-version of the PoniFile API (2.1) for this feature</li>
</ul>
</li>
<li>Expose the number of corners of a detector pixel (feature unused for now)</li>
<li>Refactor pyFAI-benchmark tool with better looking reults (Thanks Edgar)</li>
<li>Possibility to integrate in 2D with any second dimension unit:<ul>
<li>No more limited to the azimuthal angle chi</li>
<li>Several new units have been added</li>
<li>Offers the qx/qy integration as example</li>
</ul>
</li>
<li>Support for Detris Pilatus4 detector both with Si and CdTe sensors (thanks to Max Burian)</li>
<li>Support XRDML formt (compatibility with MAUD software)</li>
<li>Multigeometry gains a reset() method to free some memory with optimized garbage collection.</li>
<li>Support pathlib when reading-PONI files</li>
<li>Change in the build system:<ul>
<li>Drop of setup.py the build system based on distutils/numpy.distutils/setuptools</li>
<li>Enforce the use of meson-python</li>
<li>Move the sources of the code into src directory</li>
<li>Support for Python 3.7-3.12 (requires silx v2 for 3.12) + Provide debian packages for debian12 but ubuntu 20.04 is too old and lack meson-python</li>
</ul>
</li>
<li>Facts and figures:<ul>
<li>600+ commits; 120 pull-requests
*with the contribution of:
Edgar Gutierrez Fernandez
Jérôme Kieffer.</li>
</ul>
</li>
</ul>