36 research outputs found

    Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa

    Get PDF
    Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets. Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained4. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p

    Telehealth in paediatric orthopaedic surgery in Queensland: a 10-year review

    No full text
    BackgroundTelemedicine is a patient consultation method commonly available to patients in rural and remote areas throughout Australia. Its use in paediatric orthopaedics has been rarely described. The primary aim of this study was to identify the patient cohort accessing the orthopaedic paediatric telehealth service through the Royal Children's Hospital Queensland, so as to better allocate this resource. The secondary aims were to identify the orthopaedic conditions the patients utilizing this service suffered and to follow-up on treatment outcomes to potentially assess clinical benefit

    An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: Analysis of multiple databases

    No full text
    INTRODUCTION: Deep brain stimulation (DBS) is an established therapy for movement disorders, and is under active investigation for other neurologic and psychiatric indications. While many studies describe outcomes and complications related to stimulation therapies, the majority of these are from large academic centers, and results may differ from those in general neurosurgical practice. METHODS: Using data from both the Centers for Medicare and Medicaid Services (CMS) and the National Surgical Quality Improvement Program (NSQIP), we identified all DBS procedures related to primary placement, revision, or removal of intracranial electrodes. Cases of cortical stimulation and stimulation for epilepsy were excluded. RESULTS: Over 28,000 cases of DBS electrode placement, revision, and removal were identified during the years 2004–2013. In the Medicare dataset, 15.2% and of these procedures were for intracranial electrode revision or removal, compared to 34.0% in the NSQIP dataset. In NSQIP, significant predictors of revision and removal were decreased age (odds ratio (OR) of 0.96; 95% CI: 0.94, 0.98) and higher ASA classification (OR 2.41; 95% CI: 1.22, 4.75). Up to 48.5% of revisions may have been due to improper targeting or lack of therapeutic effect. CONCLUSION: Data from multiple North American databases suggest that intracranial neurostimulation therapies have a rate of revision and removal higher than previously reported, between 15.2 and 34.0%. While there are many limitations to registry-based studies, there is a clear need to better track and understand the true prevalence and nature of such failures as they occur in the wider surgical community
    corecore