2,994 research outputs found

    Magnetar Spindown, Hyper-Energetic Supernovae, and Gamma Ray Bursts

    Full text link
    The Kelvin-Helmholtz cooling epoch, lasting tens of seconds after the birth of a neutron star in a successful core-collapse supernova, is accompanied by a neutrino-driven wind. For magnetar-strength (∼1015\sim10^{15} G) large scale surface magnetic fields, this outflow is magnetically-dominated during the entire cooling epoch.Because the strong magnetic field forces the wind to co-rotate with the protoneutron star,this outflow can significantly effect the neutron star's early angular momentum evolution, as in analogous models of stellar winds (e.g. Weber & Davis 1967). If the rotational energy is large in comparison with the supernova energy and the spindown timescale is short with respect to the time required for the supernova shockwave to traverse the stellar progenitor, the energy extracted may modify the supernova shock dynamics significantly. This effect is capable of producing hyper-energetic supernovae and, in some cases, provides conditions favorable for gamma ray bursts. We estimate spindown timescales for magnetized, rotating protoneutron stars and construct steady-state models of neutrino-magnetocentrifugally driven winds. We find that if magnetars are born rapidly rotating, with initial spin periods (PP) of ∼1\sim1 millisecond, that of order 1051−105210^{51}-10^{52} erg of rotational energy can be extracted in ∼10\sim10 seconds. If magnetars are born slowly rotating (P≳10P\gtrsim10 ms) they can spin down to periods of ∼1\sim1 second on the Kelvin-Helmholtz timescale.Comment: 16 pages, 5 figures, emulateap

    The small scatter in BH-host correlations and the case for self-regulated BH growth

    Get PDF
    Supermassive black holes (BHs) obey tight scaling relations between their mass and host galaxy properties such as total stellar mass, velocity dispersion and potential well depth. This has led to the development of self-regulated models for BH growth, in which feedback from the central BH halts its own growth upon reaching a critical threshold. However, models have also been proposed in which feedback plays no role: so long as a fixed fraction of the host gas supply is accreted, relations like those observed can be reproduced. Here, we argue that the scatter in the observed BH–host correlations presents a demanding constraint on any model for these correlations, and that it favours self-regulated models of BH growth. We show that the scatter in the stellar mass fraction within a radius R in observed ellipticals and spheroids increases strongly at small R. At a fixed total stellar mass (or host velocity dispersion), on very small scales near the BH radius of influence, there is an order-of-magnitude scatter in the amount of gas that must have entered and formed stars. In short, the BH appears to ‘know more’ about the global host galaxy potential on large scales than the stars and gas supply on small scales. This is predicted in self-regulated models; however, models where there is no feedback would generically predict order-of-magnitude scatter in the BH–host correlations. Likewise, models in which the BH feedback in the ‘bright’ mode does not regulate the growth of the BH itself, but sets the stellar mass of the galaxy by inducing star formation or blowing out a mass in gas much larger than the galaxy stellar mass, are difficult to reconcile with the scatter on small scales

    Thermal Modification of Color in Red Alder Veneer. I. Effects of Temperature, Heating Time, and Wood Type

    Get PDF
    Red alder has become one of the most widely traded hardwood species in North America, and sliced red alder veneer is commonly applied as a decorative overlay on composite wood panels used by the furniture and cabinet industries. Red alder wood, however, acquires a mottled orange color following felling, which is undesirable when the wood is used for decorative purposes. Heating red alder wood remedies this problem to some extent, but there is still an unacceptable level of variability in the color of veneer sliced from heated veneer cants. This study examined the variation in color of red alder wood samples cut sequentially from the pith to the bark and subjected to heating under isothermal conditions. The aim was to examine whether within-tree variation in the susceptibility of red alder wood to thermal darkening can explain variation in color of veneer sliced from steamed red alder cants, and to determine the optimal thermal treatment (temperature and time) that can impart the tan color to red alder wood that industry is seeking. Results indicated that there was within-tree variation in the color of red alder samples following thermal treatment, but differences were pronounced only when wood was heated at a low temperature. Wood close to the bark tended to be redder than wood close to the pith when heated at 30°C, but such a difference was absent in wood heated at higher temperatures (50-90°C). Heating red alder wood, in vitro, at 70°C for 36 h produced wood that was evenly colored from pith to bark and matched the current industry color preference. It is suggested that the color of thermally modified red alder wood depends on the strength of reactions that produce orange/red chromophores in the wood, thermal darkening of the wood, and destruction of orange/red chromophores

    Thermal Modification of Color in Red Alder Veneer. Part II. Effects of Season, Log Storage Time, and Location of Wood in Stems

    Get PDF
    The value of red alder lumber is diminished by discoloration caused by the enzyme-mediated polymerization of the diarylheptanoid xyloside, Oregonin that results in the formation of red-colored chromophores in freshly felled wood. This discoloration can be reduced by pre-steaming wood prior to kiln drying of lumber or veneer slicing, but in practice, there is still variation in the color of heat-treated wood, particularly in veneer sliced from heat-treated cants processed at different times of the year. There is seasonal variation in the concentration of Oregonin that is involved in the discoloration of red alder wood and it is hypothesized here that heat-treated red alder wood will be redder and darker when the wood is obtained from logs harvested during spring when the concentration of Oregonin is known to be higher than in other seasons. The aim of this research was to test this hypothesis, and also examine the effects of log storage time and location of wood in stems on the color of heat-treated red alder wood. The color of red alder wood subjected to an isothermal heat treatment at 70°C was strongly influenced by the season in which parent trees were harvested and the length of time that logs were stored prior to heat treatment of wood. In particular, wood harvested in spring and stored for 2 wk prior to heat treatment was significantly darker than similarly treated wood obtained from logs harvested in other seasons, and redder than wood harvested in summer and winter. If the storage time of logs harvested in spring and summer was extended to 4 wk, however, the heat-treated wood became lighter and less red. Heat-treated wood from the inner part of the logs was redder and darker than heat-treated wood from the outer part of the logs except occasionally, when the outer sapwood was obtained from logs harvested in spring or summer. Careful control of log storage time, heating temperature, and duration of heat treatment could be used to minimize seasonal variation in the color of veneer sliced from heated red alder cants

    Intrinsic and extrinsic factors drive ontogeny of early-life at-sea behaviour in a marine top predator

    Get PDF
    Young animals must learn to forage effectively to survive the transition from parental provisioning to independent feeding. Rapid development of successful foraging strategies is particularly important for capital breeders that do not receive parental guidance after weaning. The intrinsic and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site after a brief suckling phase, and must develop foraging skills without external input. We collected location and dive data from recently-weaned grey seal pups from two regions of the United Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during their first months of independence at sea. Dive duration, depth, bottom time, and benthic diving increased over the first 40 days. The shape and magnitude of changes differed between regions. Females consistently had longer bottom times, and in the Celtic and Irish Seas they used shallower water than males. Regional sex differences suggest that extrinsic factors, such as water depth, contribute to behavioural sexual segregation. We recommend that conservation strategies consider movements of young naïve animals in addition to those of adults to account for developmental behavioural changes

    Emergence of a Dynamic Super-Structural Order Integrating Antiferroelectric and Antiferrodistortive Competing Instabilities in EuTiO3

    Full text link
    Microscopic structural instabilities of EuTiO3 single crystal were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedral rotational order was observed alongside Ti derived antiferroelectric (AFE) distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The electric and magnetic field effect on the modulated AFD order shows that the origin of large magnetoelectric coupling is based upon the dynamic equilibrium between the AFD - antiferromagnetic interactions versus the electric polarization - ferromagnetic interactions

    Shock Breakout in Core-Collapse Supernovae and its Neutrino Signature

    Get PDF
    (Abridged) We present results from dynamical models of core-collapse supernovae in one spatial dimension, employing a newly-developed Boltzmann neutrino radiation transport algorithm, coupled to Lagrangean hydrodynamics and a consistent high-density nuclear equation of state. We focus on shock breakout and its neutrino signature and follow the dynamical evolution of the cores of 11 M_sun, 15 M_sun, and 20 M_sun progenitors through collapse and the first 250 milliseconds after bounce. We examine the effects on the emergent neutrino spectra, light curves, and mix of species of artificial opacity changes, the number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon bremsstrahlung, neutrino-electron scattering, and the compressibility of nuclear matter. Furthermore, we present the first high-resolution look at the angular distribution of the neutrino radiation field both in the semi-transparent regime and at large radii and explore the accuracy with which our tangent-ray method tracks the free propagation of a pulse of radiation in a near vacuum. Finally, we fold the emergent neutrino spectra with the efficiencies and detection processes for a selection of modern underground neutrino observatories and argue that the prompt electron-neutrino breakout burst from the next galactic supernova is in principle observable and usefully diagnostic of fundamental collapse/supernova behavior. Though we are not in this study focusing on the supernova mechanism per se, our simulations support the theoretical conclusion (already reached by others) that spherical (1D) supernovae do not explode when good physics and transport methods are employed.Comment: 16 emulateapj pages, plus 24 postscript figures, accepted to The Astrophysical Journal; text revised; neutrino oscillation section expanded; Fig. 22 correcte

    Early Responses of Brassica oleracea Roots to Zinc Supply Under Sufficient and Sub-Optimal Phosphorus Supply

    Get PDF
    © Copyright © 2020 Pongrac, Fischer, Thompson, Wright and White. Shoot zinc (Zn) concentration in Brassica oleracea is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two B. oleracea accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply. Ionome profiling and deep RNA sequencing of roots revealed interactions of P and Zn in planta, without apparent phenotypic effects. In addition, increasing P supply did not reduce tissue Zn concentration. Substantial changes in gene expression in response to different P and/or Zn supplies in roots of both accessions ensured nutritionally sufficient P and Zn uptake. Numerous genes were differentially expressed after changing Zn or P supply and most of them were unique to only one accession, highlighting their different strategies in achieving nutrient sufficiency. Thus, different gene networks responded to the changing P and Zn supply in the two accessions. Additionally, enrichment analysis of gene ontology classes revealed that genes involved in lipid metabolism, response to starvation, and anion transport mechanisms were most responsive to differences in P and Zn supply in both accessions. The results agreed with previously studies demonstrating alterations in P and Zn transport and phospholipid metabolism in response to reduced P and Zn supply. It is anticipated that improved knowledge of genes responsive to P or Zn supply will help illuminate the roles in uptake and accumulation of P and Zn and might identify candidate genes for breeding high-yield-high-Zn brassicas

    Limits to the biofortification of leafy brassicas with zinc

    Get PDF
    Many humans lack sufficient zinc (Zn) in their diet for their wellbeing and increasing Zn concentrations in edible produce (biofortification) can mitigate this. Recent efforts have focused on biofortifying staple crops. However, greater Zn concentrations can be achieved in leafy vegetables than in fruits, seeds, or tubers. Brassicas, such as cabbage and broccoli, are widely consumed and might provide an additional means to increase dietary Zn intake. Zinc concentrations in brassicas are limited primarily by Zn phytotoxicity. To assess the limits of Zn biofortification of brassicas, the Zn concentration in a peat:sand (v/v 75:25) medium was manipulated to examine the relationship between shoot Zn concentration and shoot dry weight (DW) and thereby determine the critical shoot Zn concentrations, defined as the shoot Zn concentration at which yield is reduced below 90%. The critical shoot Zn concentration was regarded as the commercial limit to Zn biofortification. Experiments were undertaken over six successive years. A linear relationship between Zn fertiliser application and shoot Zn concentration was observed at low application rates. Critical shoot Zn concentrations ranged from 0.074 to 1.201 mg Zn g−1 DW among cabbage genotypes studied in 2014, and between 0.117 and 1.666 mg Zn g−1 DW among broccoli genotypes studied in 2015–2017. It is concluded that if 5% of the dietary Zn intake of a population is currently delivered through brassicas, then the biofortification of brassicas from 0.057 to > 0.100 mg Zn g−1 DW through the application of Zn fertilisers could increase dietary Zn intake substantially
    • …
    corecore