3,810 research outputs found

    Design Considerations for a Ground-based Transit Search for Habitable Planets Orbiting M dwarfs

    Full text link
    By targeting nearby M dwarfs, a transit search using modest equipment is capable of discovering planets as small as 2 Earth radii in the habitable zones of their host stars. The MEarth Project, a future transit search, aims to employ a network of ground-based robotic telescopes to monitor M dwarfs in the northern hemisphere with sufficient precision and cadence to detect such planets. Here we investigate the design requirements for the MEarth Project. We evaluate the optimal bandpass, and the necessary field of view, telescope aperture, and telescope time allocation on a star-by-star basis, as is possible for the well-characterized nearby M dwarfs. Through these considerations, 1,976 late M dwarfs (R < 0.33 Rsun) emerge as favorable targets for transit monitoring. Based on an observational cadence and on total telescope time allocation tailored to recover 90% of transit signals from planets in habitable zone orbits, we find that a network of ten 30 cm telescopes could survey these 1,976 M dwarfs in less than 3 years. A null result from this survey would set an upper limit (at 99% confidence) of 17% for the rate of occurrence of planets larger than 2 Earth radii in the habitable zones of late M dwarfs, and even stronger constraints for planets lying closer than the habitable zone. If the true occurrence rate of habitable planets is 10%, the expected yield would be 2.6 planets.Comment: accepted to PAS

    A Model for Investigating Developmental Eye Repair in Xenopus Laevis

    Get PDF
    Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair

    Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy

    Full text link
    Black phosphorus (P) has emerged as a layered semiconductor with a unique crystal structure featuring corrugated atomic layers and strong in-plane anisotropy in its physical properties. Here, we demonstrate that the crystal orientation and mechanical anisotropy in free-standing black P thin layers can be precisely determined by spatially resolved multimode nanomechanical resonances. This offers a new means for resolving important crystal orientation and anisotropy in black P device platforms in situ beyond conventional optical and electrical calibration techniques. Furthermore, we show that electrostatic-gating-induced straining can continuously tune the mechanical anisotropic effects on multimode resonances in black P electromechanical devices. Combined with finite element modeling (FEM), we also determine the Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and armchair directions, respectively.Comment: Main Text: 13 Pages, 4 Figures; Supplementary Information: 5 Pages, 2 Figures, 2 Table

    Environmental, Thermal, and Electrical Susceptibility of Black Phosphorus Field Effect Transistors

    Full text link
    Atomic layers of black phosphorus (P) isolated from its layered bulk make a new two-dimensional (2D) semiconducting crystal with sizable direct bandgap, high carrier mobility, and promises for 2D electronics and optoelectronics. However, the integrity of black P crystal could be susceptible to a number of environmental variables and processes, resulting in degradation in device performance even before the device optical image suggests so. Here, we perform a systematic study of the environmental effects on black P electronic devices through continued measurements over a month under a number of controlled conditions, including ambient light, air, and humidity, and identify evolution of device performance under each condition. We further examine effects of thermal and electrical treatments on inducing morphology and, performance changes and failure modes in black P devices. The results suggest that procedures well established for nanodevices in other 2D materials may not directly apply to black P devices, and improved procedures need to be devised to attain stable device operation.Comment: in Journal of Vacuum Science & Technology B (2015

    The challenge of evaluating pain and a pre-incisional local anesthetic block.

    Get PDF
    Background. Our objective was to test the effectiveness of a local anesthetic line block administered before surgery in reducing postoperative pain scores in dogs undergoing ovariohysterectomy (OVHX). Methods. This study is a prospective, randomized, blinded, clinical trial involving 59 healthy female dogs. An algometric pressure-measuring device was used to determine nociceptive threshold, and compared to three subjective pain scales. Group L/B received a line block of lidocaine (4 mg/kg) and bupivacaine (1 mg/kg) subcutaneously in the area of the incision site and saline subcutaneously as premedication; group L/BM (positive control) received a similar block and morphine (0.5 mg/kg) subcutaneously for premedication; and group SS (negative control) received a saline line block and saline premedication. Criteria for rescue analgesia were defined before the study. Dogs were assessed prior to surgery, at extubation (time 0) and at 2, 4, 6, 8 and 24 h post-recovery. The data were analyzed with one-way ANOVA, and a Split Plot Repeated Measures ANOVA with one grouping factor and one repeat factor (time). P &lt; 0.05 was considered statistically significant. Results. Approximately 33% of dogs required rescue analgesia at some point during the study, with no significant difference between groups. There was no significant difference between treatment groups with any assessment method. Conclusions. As there were no statistically significant differences between positive and negative controls, the outcome of this technique cannot be proven

    Non-destructive measurement of the transition probability in a Sr optical lattice clock

    Full text link
    We present the experimental demonstration of non-destructive probing of the 1S0-3P0 clock transition probability in an optical lattice clock with 87Sr atoms. It is based on the phase shift induced by the atoms on a weak off-resonant laser beam. The method we propose is a differential measurement of this phase shift on two modulation sidebands with opposite detuning with respect to the 1S0-1P1 transition, allowing a detection limited by the photon shot noise. We have measured an atomic population of 10^4 atoms with a signal to noise ratio of 100 per cycle, while keeping more than 95% of the atoms in the optical lattice with a depth of 0.1 mK. The method proves simple and robust enough to be operated as part of the whole clock setup. This detection scheme enables us to reuse atoms for subsequent clock state interrogations, dramatically reducing the loading time and thereby improving the clock frequency stability.Comment: 4 pages, 5 figure

    Sensitivity analysis of permeability parameters of bovine nucleus pulposus obtained through inverse fitting of the nonlinear biphasic equation : effect of sampling strategy

    Get PDF
    Permeability controls the fluid flow into and out of soft tissue, and plays an important role in maintaining the health status of such tissue. Accurate determination of the parameters that define permeability is important for the interpretation of models that incorporate such processes. This paper describes the determination of strain-dependent permeability parameters from the nonlinear biphasic equation from experimental data of different sampling frequencies using the Nelder–Mead simplex method. The ability of this method to determine the global optimum was assessed by constructing the whole manifold arising from possible parameter combinations. Many parameter combinations yielded similar fits with the Nelder–Mead algorithm able to identify the global maximum within the resolution of the manifold. Furthermore, the sampling strategy affected the optimum values of the permeability parameters. Therefore, permeability parameter estimations arising from inverse methods should be utilised with the knowledge that they come with large confidence intervals
    corecore