24 research outputs found

    Long-Term PIT and T-Bar Anchor Tag Retention Rates in Adult Muskellunge

    Get PDF
    Mark-recapture studies require knowledge of tag retention rates specific to tag types, fish species and size, and study duration. We determined the probability of tag loss for passive integrated transponder (PIT) tags implanted into dorsal musculature, T-bar anchor tags attached to dorsal pterygiophores, and loss of both tags in relation to years post-tagging for double-marked adult muskellunge Esox masquinongy over a 10 year period. We also used PIT tags as a benchmark to assess the interactive effects of fish length at tagging, sex, and years post-tagging on T-bar anchor tag loss rates. Only five instances of PIT tag loss were identified; the calculated probability of a fish losing its PIT tag was consistently \u3c 1.0% for up to 10 years post-tagging. The probability of T-bar anchor tag loss by muskellunge was related to the number of years post-tagging and total length of fish at tagging. T-bar anchor tag loss rate one year after tagging was 6.5%. Individuals \u3c 750 mm total length at tagging had anchor tag loss rates \u3c 10% for up to 6 years after tagging. However, the proportion of fish losing T-bar anchor tags steadily increased with increasing years post-tagging (~30% after 6 years) for larger muskellunge. Fish gender did not influence probability of T-bar anchor tag loss. Our results indicate that T-bar anchor tags are best suited for short-term applications (≤ 1 year duration) involving adult muskellunge. We recommend use of PIT tags for longer-term tagging studies, particularly for muskellunge \u3e 750 mm total length

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore