490 research outputs found

    Deletion 22q13.3 syndrome

    Get PDF
    The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome) is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH) or array comparative genomic hybridization (CGH) is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy). Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements. Individuals with deletion 22q13 should have routine examinations by the primary care physician as well as genetic evaluations with referral to specialists if neurological, gastrointestinal, renal, or other systemic problems are suspected. Affected individuals benefit from early intervention programs, intense occupational and communication therapies, adaptive exercise and sport programs, and other therapies to strengthen their muscles and increase their communication skills. No apparent life-threatening organic abnormalities accompany the diagnosis of deletion 22q13

    seXY: a tool for sex inference from genotype arrays.

    Get PDF
    Motivation Checking concordance between reported sex and genotype-inferred sex is a crucial quality control measure in genome-wide association studies (GWAS). However, limited insights exist regarding the true accuracy of software that infer sex from genotype array data.Results We present seXY, a logistic regression model trained on both X chromosome heterozygosity and Y chromosome missingness, that consistently demonstrated >99.5% sex inference accuracy in cross-validation for 889 males and 5,361 females enrolled in prostate cancer and ovarian cancer GWAS. Compared to PLINK, one of the most popular tools for sex inference in GWAS that assesses only X chromosome heterozygosity, seXY achieved marginally better male classification and 3% more accurate female classification.Availability and implementation https://github.com/Christopher-Amos-Lab/seXY.Contact [email protected] information Supplementary data are available at Bioinformatics online

    BRCA1 mutations in women with familial or early-onset breast cancer and BRCA2 mutations in familial cancer in Estonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify BRCA1 and BRCA2 mutations in the Estonian population. We analyzed genetic data and questionnaire from 64 early-onset (< 45 y) breast cancer patients, 47 familial cases (patients with breast or ovarian cancer and a case of these cancers in the family), and 33 predictive cases (patients without breast or ovarian cancer, with a family history of such diseases) from Estonia for mutations in the BRCA1 gene. A sub-set of familial cases and predictive cases were also analyzed for mutations in the BRCA2 gene.</p> <p>Methods</p> <p>For mutation detection, we used the Polymerase Chain Reaction-Single Stranded Conformation Polymorphism Heteroduplex Analysis (PCR-SSCP-HD), followed by direct DNA sequencing.</p> <p>Results</p> <p>We identified three clinically important mutations in the BRCA1 gene, including seven occurrences of the c.5382insC mutation, three of c.4154delA, and one instance of c.3881_3882delGA. We also detected six polymorphisms: c.2430T>C, c.3232A>G, c.4158A>G, c.4427T>C, c.4956A>G, and c.5002T>C. Four sequence alterations were detected in introns: c.560+64delT, c.560+ [36-38delCTT, 52-63del12], c.666-58delT, and c.5396+60insGTATTCCACTCC. In the BRCA2 gene, two clinically important mutations were found: c.9610C>T and c.6631delTTAAATG. Additionally, two alterations (c.7049G>T and c.7069+80delTTAG) with unknown clinical significance were detected.</p> <p>Conclusions</p> <p>In our dataset, the overall frequency of clinically important BRCA1 mutations in early-onset patients, familial cases, and predictive testing was 7.6% (144 cases, 11 mutation carriers). Pathogenic mutations were identified in 4 of the 64 early-onset breast cancer cases (6.3%). In familial cases, clinically important mutations in the BRCA1 gene were found in 6 of the 47 individuals analyzed (12.8%). In predictive cases, 1 clinically important mutation was detected in 33 individuals studied (3%). The occurrence of clinically important mutations in BRCA2 in familial cases of breast cancer was 2 of the 16 individuals analyzed (12.5%).</p

    Analysis of the candidate 8p21 tumour suppressor, BNIP3L, in breast and ovarian cancer

    Get PDF
    Loss of heterozygosity (LOH) on the short arm of chromosome 8, at 8p 12-p23, is one of the most frequent genetic events in both breast and ovarian cancer, suggesting the location of a shared tumour suppressor gene. Microcell-mediated chromosome transfer of chromosome 8 suppresses tumorigenicity and growth of colorectal and prostate cancer cell lines, further supporting the presence of a tumour suppressor gene on 8p. We have taken a candidate gene approach to try to identify this tumour suppressor gene at 8p 12-p23. BNIP3L, which has sequence homology to pro-apoptotic proteins and the ability to suppress colony formation in soft agar, is located at 8p21, within a region of ovarian cancer LOH, breast cancer LOH and prostate cancer metastasis suppression. BNIP3L expression was assessed by both RT-PCR and Northern blot analysis in breast and ovarian cancer cell lines and found to be expressed at similar levels relative to expression in their respective normal epithelial cell lines. Genetic analysis of BNIP3L in 40 primary ovarian and 25 primary breast tumours identified one somatic, intronic mutation in one ovarian tumour, as well as several polymorphisms, including one resulting in an amino-acid substitution. These data suggest that BNIP3L is unlikely to be the target of 8p LOH in ovarian or breast cancer

    High Proportion of 22q13 Deletions and SHANK3 Mutations in Chinese Patients with Intellectual Disability

    Get PDF
    Intellectual disability (ID) is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC) test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%), while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT) or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development
    corecore