381 research outputs found

    Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. METHODS: Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. RESULTS: Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. CONCLUSIONS: Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems

    Development of validated stability-indicating chromatographic method for the determination of fexofenadine hydrochloride and its related impurities in pharmaceutical tablets

    Get PDF
    A simple reversed phase high performance liquid chromatographic method with diode array detector (HPLC-DAD) has been developed and subsequently validated for the determination of fexofenadine hydrochloride (FEX) and its related compounds; keto fexofenadine (Impurity A), meta isomer of fexofenadine (Impurity B), methyl ester of fexofenadine (Impurity C) in addition to the methyl ester of ketofexofenadine (Impurity D). The separation was based on the use of a Hypersil BDS C-18 analytical column (250 × 4.6 mm, i.d., 5 μm). The mobile phase consisted of a mixture of phosphate buffer containing 0.1 gm% of 1-octane sulphonic acid sodium salt monohydrate and 1% (v/v) of triethylamine, pH 2.7 and methanol (60:40, v/v). The separation was carried out at ambient temperature with a flow rate of 1.5 ml/min. Quantitation was achieved with UV detection at 215 nm using lisinopril as internal standard, with linear calibration curves at concentration ranges 0.1-50 μg/ml for FEX and its related compounds. The optimized conditions were used to develop a stability-indicating HPLC-DAD method for the quantitative determination of FEX and its related compounds in tablet dosage forms. The drugs were subjected to oxidation, hydrolysis, photolysis and heat to apply stress conditions. Complete separation was achieved for the parent compounds and all degradation products. The method was validated according to ICH guidelines in terms of accuracy, precision, robustness, limits of detection and quantitation and other aspects of analytical validation

    Effectiveness of ophthalmic solution preservatives: a comparison of latanoprost with 0.02% benzalkonium chloride and travoprost with the sofZia preservative system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although in vitro and in vivo laboratory studies have suggested that benzalkonium chloride (BAK) in topical ophthalmic solutions may be detrimental to corneal epithelial cells, multiple short- and long-term clinical studies have provided evidence supporting the safety of BAK. Despite the conflicting evidence, BAK is the most commonly used preservative in ophthalmic products largely due to its proven antimicrobial efficacy. This study was designed to characterize the antimicrobial performance of two commonly used topical ocular hypotensive agents that employ different preservative systems: latanoprost 0.005% with 0.02% BAK and travoprost 0.004% with sofZia, a proprietary ionic buffer system.</p> <p>Methods</p> <p>Each product was tested for antimicrobial effectiveness by <it>European Pharmacopoeia </it>A (EP-A) standards, the most stringent standards of the three major compendia, which specify two early sampling time points (6 and 24 hours) not required by the <it>United States Pharmacopeia </it>or <it>Japanese Pharmacopoeia</it>. Aliquots were inoculated with between 10<sup>5 </sup>and 10<sup>6 </sup>colony-forming units of the test organisms: <it>Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans </it>and <it>Aspergillus brasiliensis</it>. Sampling and enumeration were conducted at protocol-defined time points through 28 days.</p> <p>Results</p> <p>BAK-containing latanoprost met EP-A criteria by immediately reducing all bacterial challenge organisms to the test sensitivity and fungal challenges within the first six hours while the preservative activity of travoprost with sofZia did not. Complete bacterial reduction by travoprost with sofZia was not shown until seven days into the test, and fungal reduction never exceeded the requisite 2 logs during the 28-day test. Travoprost with sofZia also did not meet EP-B criteria due to its limited effectiveness against <it>Staphylococcus aureus</it>. Both products satisfied United States and Japanese pharmacopoeial criteria.</p> <p>Conclusions</p> <p>Latanoprost with 0.02% BAK exhibited more effective microbial protection than travoprost with sofZia using rates of microbial reduction, time to no recovery for all challenges and evaluation against EP-A criteria as measures. The rapid and complete reduction of all microbial challenges demonstrates that antimicrobial activity of latanoprost with 0.02% BAK exceeds that of travoprost with sofZia preservative system in these products and provides a more protective environment in the event of contamination and subsequent exposure to microorganisms during use.</p

    Quantifying Age-Related Differences in Information Processing Behaviors When Viewing Prescription Drug Labels

    Get PDF
    Adverse drug events (ADEs) are a significant problem in health care. While effective warnings have the potential to reduce the prevalence of ADEs, little is known about how patients access and use prescription labeling. We investigated the effectiveness of prescription warning labels (PWLs, small, colorful stickers applied at the pharmacy) in conveying warning information to two groups of patients (young adults and those 50+). We evaluated the early stages of information processing by tracking eye movements while participants interacted with prescription vials that had PWLs affixed to them. We later tested participants’ recognition memory for the PWLs. During viewing, participants often failed to attend to the PWLs; this effect was more pronounced for older than younger participants. Older participants also performed worse on the subsequent memory test. However, when memory performance was conditionalized on whether or not the participant had fixated the PWL, these age-related differences in memory were no longer significant, suggesting that the difference in memory performance between groups was attributable to differences in attention rather than differences in memory encoding or recall. This is important because older adults are recognized to be at greater risk for ADEs. These data provide a compelling case that understanding consumers’ attentive behavior is crucial to developing an effective labeling standard for prescription drugs

    USP 27 NF 22 Pharmacopeia

    No full text
    ill.;919hal;30c

    USP 24 NF 19 Pharmacopeia

    No full text
    ixix;ill.;1276hal.;30c
    corecore