50 research outputs found

    An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes

    Full text link
    © 2019, Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature. In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and real-life systems, where the results obtained by our method are highly promising

    NeuSub: A Neural Submodular Approach for Citation Recommendation

    Full text link
    Citation recommendation is a task that aims to automatically select suitable references for a working manuscript. This task has become increasingly urgent as the typical pools of candidates continue to grow, in the order of tens or hundreds of thousands or more. While several approaches to citation recommendation have been proposed in the literature, they generally seem to lack principled mechanisms to ensure diversity and other global properties among the recommended citations. For this reason, in this paper we propose a novel citation recommendation approach that leverages a submodular scoring function and a deep document representation to achieve an effective trade-off between relevance to the query and diversity of the references. To optimally train the scoring function and the deep representation, we propose a novel training objective based on a structural/multiclass hinge loss and incremental recommendations. The experimental results over three popular citation datasets have showed that the proposed approach has led to remarkable accuracy improvements, with an increase of up to 1.91 pp of MRR and 3.29 pp of F1@100 score with respect to a state-of-the-art citation recommendation system

    Learning Neural Textual Representations for Citation Recommendation

    Full text link
    With the rapid growth of the scientific literature, manually selecting appropriate citations for a paper is becoming increasingly challenging and time-consuming. While several approaches for automated citation recommendation have been proposed in the recent years, effective document representations for citation recommendation are still elusive to a large extent. For this reason, in this paper we propose a novel approach to citation recommendation which leverages a deep sequential representation of the documents (Sentence-BERT) cascaded with Siamese and triplet networks in a submodular scoring function. To the best of our knowledge, this is the first approach to combine deep representations and submodular selection for a task of citation recommendation. Experiments have been carried out using a popular benchmark dataset - the ACL Anthology Network corpus - and evaluated against baselines and a state-of-the-art approach using metrics such as the MRR and F1-at-k score. The results show that the proposed approach has been able to outperform all the compared approaches in every measured metric

    Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    Get PDF
    YesThere are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences

    Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study

    Get PDF
    OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required

    Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database

    Get PDF
    Background: Diabetes mellitus is a common co-existing disease in the critically ill. Diabetes mellitus may reduce the risk of acute respiratory distress syndrome (ARDS), but data from previous studies are conflicting. The objective of this study was to evaluate associations between pre-existing diabetes mellitus and ARDS in critically ill patients with acute hypoxemic respiratory failure (AHRF). Methods: An ancillary analysis of a global, multi-centre prospective observational study (LUNG SAFE) was undertaken. LUNG SAFE evaluated all patients admitted to an intensive care unit (ICU) over a 4-week period, that required mechanical ventilation and met AHRF criteria. Patients who had their AHRF fully explained by cardiac failure were excluded. Important clinical characteristics were included in a stepwise selection approach (forward and backward selection combined with a significance level of 0.05) to identify a set of independent variables associated with having ARDS at any time, developing ARDS (defined as ARDS occurring after day 2 from meeting AHRF criteria) and with hospital mortality. Furthermore, propensity score analysis was undertaken to account for the differences in baseline characteristics between patients with and without diabetes mellitus, and the association between diabetes mellitus and outcomes of interest was assessed on matched samples. Results: Of the 4107 patients with AHRF included in this study, 3022 (73.6%) patients fulfilled ARDS criteria at admission or developed ARDS during their ICU stay. Diabetes mellitus was a pre-existing co-morbidity in 913 patients (22.2% of patients with AHRF). In multivariable analysis, there was no association between diabetes mellitus and having ARDS (OR 0.93 (0.78-1.11); p = 0.39), developing ARDS late (OR 0.79 (0.54-1.15); p = 0.22), or hospital mortality in patients with ARDS (1.15 (0.93-1.42); p = 0.19). In a matched sample of patients, there was no association between diabetes mellitus and outcomes of interest. Conclusions: In a large, global observational study of patients with AHRF, no association was found between diabetes mellitus and having ARDS, developing ARDS, or outcomes from ARDS. Trial registration: NCT02010073. Registered on 12 December 2013
    corecore