286 research outputs found

    Establishment of a Percutaneous Coronary Intervention Registry in Vietnam: Rationale and Methodology

    Get PDF
    Copyright: © 2020 The Author(s). Background: In lower- and middle-income countries across Asia there has been a rapid expansion and uptake of percutaneous coronary intervention (PCI). However, there has been limited routine collection of related data, particularly around quality, safety and cost. The aim of this study was to assess the viability of implementing routine collection of PCI data in a registry at a leading hospital in Hanoi, Vietnam. Method: A Vietnamese data collection form and collection strategy were developed in collaboration with the Vietnam National Heart Institute. Information on patient characteristics, treatments, and outcomes was collected through direct interviews using a standardised form and medical record abstraction, while PCI data was read and coded into paper forms by interventional cardiologists. Viability of the registry was determined by four main factors: 1) being able to collect a representative sample; 2) quality of data obtained; 3) costs and time taken for data collection by hospital staff; and 4) level of support from key stakeholders in the institute. Results: Between September 2017 and May 2018, 1,022 patients undergoing PCI were recruited from a total of 1,041 procedures conducted during that time frame. The estimated mean time to collect information from patients before discharge was 60 minutes. Of the collected data fields, 98% were successfully completed. Most hospital staff surveyed indicated support for the continuation of the activity following the implementation of the pilot study. Conclusions: The proposed methodology for establishing a PCI registry in a large hospital in Vietnam produced high quality data and was considered worthwhile by hospital staff. The model has the potential opportunity for replication in other cardiac catheterisation sites, leading to a national PCI registry in Vietnam

    Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions

    Full text link
    Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn5_5 using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn5_5, CeRhIn5_5, and YbAl3_3, each with different electron mass. In contrast with Au/CeCoIn5_5 junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).Comment: 2 pages, 2 figures, submitted to the SCES conference, Houston, Texas, USA, May 13-18, 200

    Probing The Electronic Structure Of Pure And Doped Cem In5 (m=co,rh,ir) Crystals With Nuclear Quadrupolar Resonance

    Get PDF
    We report calculations of the electric-field gradients (EFGs) in pure and doped CeM In5 (M=Co, Rh, and Ir) compounds and compare with experiment. The degree to which the Ce4f electron is localized is treated within various models: the local-density approximation, generalized gradient approximation (GGA), GGA+U, and 4f -core approaches. We find that there is a correlation between the observed EFG and whether the 4f electron participates in the band formation or not. We also find that the EFG evolves linearly with Sn doping in CeRhIn5, suggesting the electronic structure is modified by doping. In contrast, the observed EFG in CeCoIn5 doped with Cd changes little with doping. These results indicate that nuclear quadrupolar resonance is a sensitive probe of electronic structure. © 2008 The American Physical Society.7724Slichter, C.P., (1990) Principles of Magnetic Resonance, , 3rd ed. (Springer-Verlag, New YorkCurro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Sarrao, J.L., (2005) Nature (London), 434, p. 622. , NATUAS 0028-0836 10.1038/nature03428Farnan, I., Cho, H., Weber, W.J., (2007) Nature (London), 445, p. 190. , NATUAS 0028-0836 10.1038/nature05425Zheng, G.-Q., Tanabe, K., Mito, T., Kawasaki, S., Kitaoka, Y., Aoki, D., Haga, Y., Onuki, Y., (2001) Phys. Rev. Lett., 86, p. 4664. , PRLTAO 0031-9007 10.1103/PhysRevLett.86.4664Movshovich, R., Jaime, M., Thompson, J.D., Petrovic, C., Fisk, Z., Pagliuso, P.G., Sarrao, J.L., (2001) Phys. Rev. Lett., 86, p. 5152. , PRLTAO 0031-9007 10.1103/PhysRevLett.86.5152Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503. , PRBMDO 0163-1829 10.1103/PhysRevB.64.100503Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2001) Phys. Rev. B, 65, p. 014506. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014506Ormeno, R.J., Sibley, A., Gough, C.E., Sebastian, S., Fisher, I.R., (2002) Phys. Rev. Lett., 88, p. 047005. , PRLTAO 0031-9007 10.1103/PhysRevLett.88.047005Park, T., Ronning, F., Yuan, H.Q., Salamon, M.B., Movshovich, R., Sarrao, J.L., Thompson, J.D., (2006) Nature (London), 440, p. 65. , NATUAS 0028-0836 10.1038/nature04571Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2001) Europhys. Lett., 53, p. 354. , EULEEJ 0295-5075 10.1209/epl/i2001-00161-8Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R14621Curro, N.J., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2000) Phys. Rev. B, 62, p. 6100. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R6100Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4986Shishido, H., Settai, R., Araki, S., Ueda, T., Inada, Y., Kobayashi, T.C., Muramatsu, T., Onuki, Y., (2002) Phys. Rev. B, 66, p. 214510. , PRBMDO 0163-1829 10.1103/PhysRevB.66.214510Shishido, H., Settai, R., Harima, H., Onuki, Y., (2005) J. Phys. Soc. Jpn., 74, p. 1103. , JUPSAU 0031-9015 10.1143/JPSJ.74.1103Pham, L.D., Park, T., Maquilon, S., Thompson, J.D., Fisk, Z., (2006) Phys. Rev. Lett., 97, p. 056404. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.056404Daniel, M., Bauer, E.D., Han, S.-W., Booth, C.H., Cornelius, A.L., Pagliuso, P.G., Sarrao, J.L., (2005) Phys. Rev. Lett., 95, p. 016406. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.016406Paglione, J., Sayles, T.A., Ho, P.-C., Jeffries, J.R., Maple, M.B., (2007) Nat. Phys., 3, p. 703. , ZZZZZZ 1745-2473Urbano, R.R., Young, B.-L., Curro, N.J., Thompson, J.D., Pham, L.D., Fisk, Z., (2007) Phys. Rev. Lett., 99, p. 146402. , PRLTAO 0031-9007 10.1103/PhysRevLett.99.146402Czyzyk, M.T., Sawatzky, G.A., (1994) Phys. Rev. B, 49, p. 14211. , PRBMDO 0163-1829 10.1103/PhysRevB.49.14211Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A., (1993) Phys. Rev. B, 48, p. 16929. , PRBMDO 0163-1829 10.1103/PhysRevB.48.16929Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.257001Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, , Karlheinz Schwarz, Techn. Universität Wien, AustriaKuneš, J., Novák, P., Divis, M., Oppeneer, P.M., (2001) Phys. Rev. B, 63, p. 205111. , PRBMDO 0163-1829 10.1103/PhysRevB.63.205111Blaha, P., Schwarz, K., Herzig, P., (1985) Phys. Rev. Lett., 54, p. 1192. , PRLTAO 0031-9007 10.1103/PhysRevLett.54.1192Herzig, P., (1985) Theor. Chim. Acta, 67, p. 323. , TCHAAM 0040-5744 10.1007/BF00529304Mohn, P., (2000) Hyperfine Interact., 128, p. 67. , HYINDN 0304-3843 10.1023/A:1012619212656Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, p. 337. , JCOMEL 0953-8984 10.1088/0953-8984/13/17/103Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , PRBMDO 0163-1829 10.1103/PhysRevB.45.13244Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865Kohori, Y., Inoue, Y., Kohara, T., Tomka, G., Riedi, P.C., (1999) Physica B, 259-261, p. 103. , PHYBE3 0921-4526Rusz, J., Biasini, M., (2005) Phys. Rev. B, 71, p. 233103. , PRBMDO 0163-1829 10.1103/PhysRevB.71.233103Kohori, Y., Yamato, Y., Iwamoto, Y., Kohara, T., Bauer, E.D., Maple, M.B., Sarrao, J.L., (2001) Phys. Rev. B, 64, p. 134526. , PRBMDO 0163-1829 10.1103/PhysRevB.64.134526Curro, N.J., Simovic, B., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Martins, G.B., (2001) Phys. Rev. B, 64, p. 180514. , PRBMDO 0163-1829 10.1103/PhysRevB.64.180514Lynch, D.W., Weaver, J.H., (1987) Handbook on the Physics and Chemistry of Rare Earths, 10, p. 231. , edited by K. A. Gschneidner, L. Eyring, and S. Hüfner (North-Holland, AmsterdamShishido, H., Settai, R., Aoki, D., Ikeda, S., Nakawaki, H., Nakamura, N., Iizuka, T., Onuki, Y., (2002) J. Phys. Soc. Jpn., 71, p. 162. , JUPSAU 0031-9015 10.1143/JPSJ.71.162Elgazzar, S., Opahle, I., Hayn, R., Oppeneer, P.M., (2004) Phys. Rev. B, 69, p. 214510. , PRBMDO 0163-1829 10.1103/PhysRevB.69.214510Oppeneer, P.M., Elgazzar, S., Shick, A.B., Opahle, I., Rusz, J., Hayn, R., (2007) J. Magn. Magn. Mater., 310, p. 1684. , JMMMDC 0304-8853 10.1016/j.jmmm.2006.10.763Bauer, E.D., Capan, C., Ronning, F., Movshovich, R., Thompson, J.D., Sarrao, J.L., (2005) Phys. Rev. Lett., 94, p. 047001. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047001Nakatsuji, S., Pines, D., Fisk, Z., (2004) Phys. Rev. Lett., 92, p. 016401. , PRLTAO 0031-9007 10.1103/PhysRevLett.92.016401Curro, N.J., Young, B.-L., Schmalian, J., Pines, D., (2004) Phys. Rev. B, 70, p. 235117. , PRBMDO 0163-1829 10.1103/PhysRevB.70.235117Yashima, M., Kawasaki, S., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Shishido, H., Settai, R., Onuki, Y., (2004) J. Phys. Soc. Jpn., 73, p. 2073. , JUPSAU 0031-9015 10.1143/JPSJ.73.2073Kawasaki, S., Zheng, G.-Q., Kan, H., Kitaoka, Y., Shishido, H., Onuki, Y., (2005) Phys. Rev. Lett., 94, p. 037007. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.037007Haase, J., Sushkov, O.P., Horsch, P., Williams, G.V.M., (2004) Phys. Rev. B, 69, p. 094504. , PRBMDO 0163-1829 10.1103/PhysRevB.69.094504Curro, N.J., Nicklas, M., Stockert, O., Park, T., Habicht, K., Kiefer, K., Pham, L.D., Thompson, J.D., Steglich, F., (2007) Phys. Rev. B, 76, p. 052401. , PRBMDO 0163-1829 10.1103/PhysRevB.76.052401Settai, R., Shishido, H., Ikeda, S., Murakawa, Y., Nakashima, M., Aoki, D., Haga, Y., Onuki, Y., (2001) J. Phys.: Condens. Matter, 13, p. 627. , JCOMEL 0953-8984 10.1088/0953-8984/13/27/103Normile, P.S., Heathman, S., Idiri, M., Boulet, P., Rebizant, J., Wastin, F., Lander, G.H., Lindbaum, A., (2005) Phys. Rev. B, 72, p. 184508. , PRBMDO 0163-1829 10.1103/PhysRevB.72.184508Oppeneer, P.M., (2001) Handbook of Magnetic Materials, 13, pp. 229-422. , edited by K. H. J. Buschow (Elsevier, AmsterdamOppeneer, P.M., Antonov, V.N., Yaresko, A.N., Perlov, A.Y., Eschrig, H., (1997) Phys. Rev. Lett., 78, p. 4079. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4079Shim, J.H., Haule, K., Kotliar, G., (2007) Science, 318, p. 1615. , SCIEAS 0036-8075 10.1126/science.1149064Alver, U., Goodrich, R.G., Harrison, N., Hall, D.W., Palm, E.C., Murphy, T.P., Tozer, S.W., Fisk, Z., (2001) Phys. Rev. B, 64, p. 180402. , PRBMDO 0163-1829 10.1103/PhysRevB.64.180402Christianson, A.D., Lawrence, J.M., Pagliuso, P.G., Moreno, N.O., Sarrao, J.L., Thompson, J.D., Riseborough, P.S., Lacerda, A.H., (2002) Phys. Rev. B, 66, p. 193102. , PRBMDO 0163-1829 10.1103/PhysRevB.66.193102Haga, Y., Inada, Y., Harima, H., Oikawa, K., Murakawa, M., Nakawaki, H., Tokiwa, Y., Onuki, Y., (2001) Phys. Rev. B, 63, p. 060503. , PRBMDO 0163-1829 10.1103/PhysRevB.63.060503Fujimori, S.-I., Fujimori, A., Shimada, K., Narimura, T., Kobayashi, K., Namatame, H., Taniguchi, M., Opnuki, Y., (2006) Phys. Rev. B, 73, p. 224517. , PRBMDO 0163-1829 10.1103/PhysRevB.73.224517Paglione, J., Tanatar, M.A., Hawthorn, D.G., Ronning, F., Hill, R.W., Sutherland, M., Taillefer, L., Petrovic, C., (2006) Phys. Rev. Lett., 97, p. 106606. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.10660

    Exclusive 16O(γ,π-p) reaction in the Δ resonance region

    Get PDF
    We report the first exclusive (γ,π-p) measurements on a complex nucleus. The 16O(γ,π-p) reaction was measured at pion laboratory angles of 64° and 120°. Coincident protons were detected over the quasifree angular correlation range using a vertical array of seven plastic scintillator detectors spanning ±33° about the scattering plane. The cross sections are compared to factorized distorted-wave impulse approximation calculations; these provide a good description of the backward angle data, but are in serious disagreement with the forward angle data

    Is the Luttinger liquid a new state of matter?

    Full text link
    We are demonstrating that the Luttinger model with short range interaction can be treated as a type of Fermi liquid. In line with the main dogma of Landau's theory one can define a fermion excitation renormalized by interaction and show that in terms of these fermions any excited state of the system is described by free particles. The fermions are a mixture of renormalized right and left electrons. The electric charge and chirality of the Landau quasi-particle is discussed.Comment: paper 10 pages. This version of the paper will be published in Foundations of Physic

    Spin-dependent transport in a Luttinger liquid

    Full text link
    We develop a detailed theory for spin transport in a one-dimensional quantum wire described by Luttinger liquid theory. A hydrodynamic description for the quantum wire is supplemented by boundary conditions taking into account the exchange coupling between the magnetization of ferromagnetic reservoirs and the boundary magnetization in the wire. Spin-charge separation is shown to imply drastic and qualitative consequences for spin-dependent transport. In particular, the spin accumulation effect is quenched except for fine-tuned parameter regimes. We propose several feasible setups involving an external magnetic field to detect this phenomenon in transport experiments on single-wall carbon nanotubes. In addition, electron-electron backscattering processes, which do not have an important effect on thermodynamic properties or charge transport, are shown to modify spin-dependent transport through long quantum wires in a crucial way.Comment: 23 pages, 4 figure

    Proton propagation in nuclei studied in the (e,e’p) reaction

    Get PDF
    Proton propagation in nuclei was studied using the (e,e’p) reaction in the quasifree region. The coincidence (e,e’p) cross sections were measured at an electron angle of 50.4° and proton angles of 50.1°, 58.2°, 67.9°, and 72.9° for 12C, 27Al, 58Ni, and 181Ta targets at a beam energy of 779.5 MeV. The average outgoing proton energy was 180 MeV. The ratio of the (e,e’p) yield to the simultaneously measured (e,e’) yield was compared to that calculated in the plane-wave impulse approximation and an experimental transmission defined. These experimental transmissions are considerably larger (a factor of ∼2 for 181Ta) than those one would calculate from the free N-N cross sections folded into the nuclear density distribution. A new calculation that includes medium effects (N-N correlations, density dependence of the N-N cross sections and Pauli suppression) accounts for this increase

    Tensor polarization in elastic electron-deuteron scattering in the momentum transfer range 3.8≤Q≤4.6 fm-1

    Get PDF
    The tensor polarization of the recoil deuteron in elastic electron-deuteron scattering has been measured at the Bates Linear Accelerator Center at three values of four-momentum transfer Q=3.78, 4.22, and 4.62 fm-1, corresponding to incident electron energies of 653, 755, and 853 MeV. The scattered electrons and the recoil deuterons were detected in coincidence. The recoil deuterons were transported to a liquid hydrogen target to undergo a second scattering. The angular distribution of the d→-p scattering was measured using a polarimeter. The polarimeter was calibrated in an auxiliary experiment using a polarized deuteron beam at the Laboratoire National Saturne. A Monte Carlo procedure was used to generate interpolated calibration data because the energy spread in the deuteron energies in the Bates experiment spanned the range of deuteron energies in the calibration experiment. The extracted values of t20 are compared to predictions of different theoretical models of the electromagnetic form factors of the deuteron: nonrelativistic and relativistic nucleon-meson dynamics, Skyrme model, quark models, and perturbative quantum chromodynamics. Along with the world data the structure functions A(Q) and B(Q) are used to separate the charge monopole and charge quadrupole form factors of the deuteron. A node in the charge monopole form factor is observed at Q=4.39±0.16 fm-1

    Measurement of tensor polarization in elastic electron-deuteron scattering in the momentum-transfer range 3.8≤q≤4.6 fm-1

    Get PDF
    The tensor polarization t20 of the recoil deuteron in elastic e-d scattering has been measured for three values of four-momentum transfer, q=3.78, 4.22, and 4.62 fm-1. The data have been used to locate the first node in the charge monopole form factor of the deuteron at q=4.39±0.16 fm-1. The results for t20 are in reasonable agreement with expectations based on the nucleon-meson description of nuclear dynamic
    • …
    corecore