73 research outputs found

    A multi-criteria decision-making in relieving grinding process of surface of gear milling tooth based on the archimedean spiral using taguchi-ahp-topsis method

    Get PDF
    In this study, in order to optimize the quality criteria of the machined surface based on the Archimedean spiral, the relieving grinding process (RGP) was performed to machine the material of HSS P18 in a 1Б811 machine with four input parameters including graininess of grinding wheel (G), grinding wheel hardness (Hd), velocity of grinding wheel (V), and feed rate (s) and with three quality criteria including surface roughness (Ra), hardening of surface layer (∆HRC), and hardened layer thickness (∆L). Taguchi-AHP-Topsis method was successfully applied to solve the Multi-Criteria Decision Making (MCDM) problem in this case. The optimized results of the output parameters are surface roughness of 0.21 Âµm, surface hardening of 1.45 HRC, and hardened layer thickness of 34.18 Âµm. These results were determined at the set of the input parameters includes G, V, s with their values of 120, 24 m/s, 2.08 m/min, respectively, and Hd at level 1. The optimal results were verified through the comparison between the calculated and the experimental results using this set of optimal parameters. The differences between the calculated results and the experimental results were quite small (maximum different value was 4.8 %) Thus, the results of this study can be applied to solve the multi-objective optimization problems in RGP of the GMT surface based on the Archimedean spira

    Patrilineal Perspective on the Austronesian Diffusion in Mainland Southeast Asia

    Get PDF
    The Cham people are the major Austronesian speakers of Mainland Southeast Asia (MSEA) and the reconstruction of the Cham population history can provide insights into their diffusion. In this study, we analyzed non-recombining region of the Y chromosome markers of 177 unrelated males from four populations in MSEA, including 59 Cham, 76 Kinh, 25 Lao, and 17 Thai individuals. Incorporating published data from mitochondrial DNA (mtDNA), our results indicated that, in general, the Chams are an indigenous Southeast Asian population. The origin of the Cham people involves the genetic admixture of the Austronesian immigrants from Island Southeast Asia (ISEA) with the local populations in MSEA. Discordance between the overall patterns of Y chromosome and mtDNA in the Chams is evidenced by the presence of some Y chromosome lineages that prevail in South Asians. Our results suggest that male-mediated dispersals via the spread of religions and business trade might play an important role in shaping the patrilineal gene pool of the Cham people

    Awareness and preparedness of healthcare workers against the first wave of the COVID-19 pandemic: A cross-sectional survey across 57 countries.

    Get PDF
    BACKGROUND: Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave. METHODS: This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training. RESULTS: We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0-14.0) and the median awareness score was 29.6 (IQR = 26.6-32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a 'great-extent-of-confidence' in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors. INTERPRETATION: There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Battery Management System for Unmanned Electric Vehicles with CAN BUS and Internet of Things

    No full text
    In recent decades, the trend of using zero-emission vehicles has been constantly evolving. This trend brings about not only the pressure to develop electric vehicles (EVs) or hybrid electric vehicles (HEVs) but also the demand for further developments in battery technologies and safe use of battery systems. Concerning the safe usage of battery systems, Battery Management Systems (BMS) play one of the most important roles. A BMS is used to monitor operating temperature and State of Charge (SoC), as well as protect the battery system against cell imbalance. The paper aims to present hardware and software designs of a BMS for unmanned EVs, which use Lithium multi-cell battery packs. For higher modularity, the designed BMS uses a distributed topology and contains a master module with more slave modules. Each slave module is in charge of monitoring and protecting a multi-cell battery pack. All information about the state of each battery pack is sent to the master module which saves and sends all data to the control station if required. Controlled Area Network (CAN) bus and Internet of Things technologies are designed for requirements from different applications for communications between slave modules and the master module, and between the master module and control station

    Investigation of influence of grinding wheel and cutting parameters on surface roughness and surface hardening when relieving grinding the gear milling teeth surface based on the Archimedes' spiral

    No full text
    3D surfaces based on the Archimedes' spiral are widely used in mechanical engineering, especially in the manufacturing the gear milling cutters. The machining process to create this type of surface is usually performed in specialized machines. In this study, relieving grinding process was conducted to machine the Archimedes surface of HSS P18 workpiece material using a specialized machine (1Б811) to investigate the influence of the grinding wheel graininess (G), hardness of grinding wheel (Hd), grinding wheel velocity (V), and feedrate (s) on surface quality including surface roughness (Ra) and surface hardening (ΔHRC). The experimental plan with 27 experiments (L27) was designed using the Taguchi method. Applying the analysis of variance (ANOVA), the influence of G, V, s, and Hd on Ra and ΔHRC was investigated. G, V, s, and Hd have different influences on Ra and ΔHRC in the relieving grinding process. V has the greatest influence on Ra and ΔHRC with 40.96% for Ra and 26.43% for ΔHRC. The grinding wheel hardness that has the lowest influence on Ra (0.82%), whereas the feedrate has a negligible effect on ΔHRC (7.01%). The interaction effect of the input parameters on Ra is not significant (2.91%). However, for ΔHRC, the interaction influence degree of these parameters on this criterion is quite high (33.77%). From the experimental data, Ra and ΔHRC were presented as a quadratic function of G, V, s, and Hd with high values of determination coefficient (R2 = 92.75% for Ra and R2 = 92.00% for ΔHRC). In the surveyed range of the input parameters, Ra decreases if G and V increase, and s decreases. Also in this survey range, the hardening increases if the values of the input parameters (G, V, and s) increase. This study also determined that there is no clear rule about the relationship between Ra and ΔHRC. Further studies need to be carried out to find the input optimal values ensuring the quality criteria of the relieving grinding process

    Comparative Analysis of Energy Storage and Buffer Units for Electric Military Vehicle: Survey of Experimental Results

    No full text
    This paper deals with the analyses of batteries used in current military systems to power the electric drives of military vehicles. The article focuses on battery analyses based on operational data obtained from measurements rather than analyses of the chemical composition of the tested batteries. The authors of the article used their experience from the development test-laboratory of military technology. This article presents a comparative analysis of existing and promising technologies in the field of energy storage and buffering for military electric vehicles. The overview of these technologies, including the design, operating principles, advantages, and disadvantages, are briefly presented to produce theoretical comparative analyses. However, this article mainly focuses on the experimental verification of operational ability in varied conditions, as well as the comparison and analysis of these results. The main part of the article provides more experimental studies on technologies of energy storage and buffering using the results of several experiments conducted to demonstrate the behavior of each technology in different working conditions. The output parameters, as well as the state of charge of each technology’s samples, were surveyed in various temperatures and loading characteristics. The results presented in this paper are expected to be useful for optimizing the selection of energy storage and buffering solutions for military electric vehicles in different applications and functional environments

    Highly Dispersed Nickel Nanoparticles on Hierarchically Ordered Macroporous Al<sub>2</sub>O<sub>3</sub> and Its Catalytic Performance for Steam Reforming of 1-Methyl Naphthalene

    No full text
    In this study, we investigate the effect of a hierarchically ordered macroporous structure of alumina support on the steam reforming of 1-methyl naphthalene with mesoporous alumina-supported nickel and potassium (xK/Ni–MeAl), and macroporous alumina-supported nickel and potassium (xK/Ni–MaAl) catalysts. Hierarchically ordered macroporosity in Al2O3 supports plays an important role in maintaining the high Ni dispersion through multiple interactions in Ni–K over AlO4 tetrahedra in alumina. This, in turn, improves the catalytic performance of steam reforming, including high gas yields, turnover frequency for hydrogen production, and 1-methyl naphthalene conversion. At high K content, the Ni active sites over xK/Ni–MeAl catalysts significantly decrease, resulting in almost zero steam reforming rate in the reaction test. Conversely, the potassium–alumina interaction in xK/Ni–MaAl catalysts not only diminishes the formation of the inactive nickel aluminate phase but also maintains the highly dispersed Ni active sites, resulting in a high steam reforming rate
    • …
    corecore