21 research outputs found

    The potential impact of intensified community hand hygiene interventions on respiratory tract infections: a modelling study

    Get PDF
    Hand hygiene is among the most fundamental and widely used behavioural measures to reduce the person-to-person spread of human pathogens and its effectiveness as a community intervention is supported by evidence from randomized trials. However, a theoretical understanding of the relationship between hand hygiene frequency and change in risk of infection is lacking. Using a simple model-based framework for understanding the determinants of hand hygiene effectiveness in preventing viral respiratory tract infections, we show that a crucial, but overlooked, determinant of the relationship between hand hygiene frequency and risk of infection via indirect transmission is persistence of viable virus on hands. If persistence is short, as has been reported for influenza, hand-washing needs to be performed very frequently or immediately after hand contamination to substantially reduce the probability of infection. When viable virus survival is longer (e.g. in the presence of mucus or for some enveloped viruses) less frequent hand washing can substantially reduce the infection probability. Immediate hand washing after contamination is consistently more effective than at fixed-time intervals. Our study highlights that recommendations on hand hygiene should be tailored to persistence of viable virus on hands and that more detailed empirical investigations are needed to help optimize this key intervention

    The importance of sustained compliance with physical distancing during COVID-19 vaccination rollout

    Get PDF
    Background: The increasing vaccination coverage against SARS-CoV-2 enabled relaxation of lockdowns in many countries. The public health authorities are seeking recommendations on the continuation of physical distancing measures during ongoing vaccination rollouts. Compliance with these measures is waning while more transmissible virus variants have emerged. Methods: We used a SARS-CoV-2 transmission model to investigate the feedback between compliance, infection incidence, and vaccination coverage. We quantified our findings in terms of cumulative numbers of new infections three and six months after the start of vaccination. Results: Our results suggest that the combination of fast waning compliance in non-vaccinated individuals, low compliance in vaccinated individuals, low vaccine efficacy against infection and more transmissible virus variants may result in a higher cumulative number of new infections than in a situation without vaccination. These adverse effects can be alleviated by deploying behavioural interventions that should preferably target both vaccinated and non-vaccinated individuals. The choice of the most appropriate intervention depends on vaccination rate and vaccine efficacy again infection. Conclusion: Supplementary behavioural interventions aiming to boost compliance to physical distancing measures can improve the outcome of SARS-CoV-2 vaccination programmes, until vaccination coverage is suffciently high. For optimal results, these interventions should be selected based on the vaccine efficacy against infection and expected vaccination rate

    Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit-analysis of 9 years of surveillance at a university hospital using a mathematical model

    Get PDF
    Background: Hospital outbreaks of multidrug resistant Pseudomonas aeruginosa are often caused by Pseudomonas aeruginosa clones which produce metallo-ÎČ-lactamases, such as Verona Integron-encoded Metallo-ÎČ-lactamase (VIM). Although different sources have been identified, the exact transmission routes often remain unknown. However, quantifying the role of different transmission routes of VIM-PA is important for tailoring infection prevention and control measures. The aim of this study is to quantify the relative importance of different transmission routes by applying a mathematical transmission model using admission and discharge dates as well as surveillance culture data of patients. Methods: We analyzed VIM-PA surveillance data collected between 2010 and 2018 of two intensive-care unit (ICU) wards for adult patients of the Erasmus University Medical Center Rotterdam using a mathematical transmission model. We distinguished two transmission routes: direct cross-transmission and a persistent environmental route. Based on admission, discharge dates, and surveillance cultures, we estimated the proportion of transmissions assigned to each of the routes. Results: Our study shows that only 13.7% (95% CI 1.4%, 29%) of the transmissions that occurred in these two ICU wards were likely caused by cross-transmission, leaving the vast majority of transmissions (86.3%, 95% CI 71%, 98.6%) due to persistent environmental contamination. Conclusions: Our results emphasize that persistent contamination of the environment may be an important driver of nosocomial transmissions of VIM-PA in ICUs. To minimize the transmission risk from the environment, potential reservoirs should be regularly and thoroughly cleaned and disinfected, or redesigned

    The burden and dynamics of hospital-acquired SARS-CoV-2 in England

    Get PDF
    Hospital-based transmission had a dominant role in Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV) epidemics1,2, but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England, we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital admissions in this period). Analysis of time series data provided evidence that patients who themselves acquired SARS-CoV-2 infection in hospital were the main sources of transmission to other patients. Increased transmission to inpatients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognized scale of hospital transmission, have direct implications for targeting of hospital control measures and highlight the need to design hospitals better equipped to limit the transmission of future high-consequence pathogens

    The contribution of hospital-acquired infections to the COVID-19 epidemic in England in the first half of 2020.

    Get PDF
    BACKGROUND: SARS-CoV-2 is known to transmit in hospital settings, but the contribution of infections acquired in hospitals to the epidemic at a national scale is unknown. METHODS: We used comprehensive national English datasets to determine the number of COVID-19 patients with identified hospital-acquired infections (with symptom onset > 7 days after admission and before discharge) in acute English hospitals up to August 2020. As patients may leave the hospital prior to detection of infection or have rapid symptom onset, we combined measures of the length of stay and the incubation period distribution to estimate how many hospital-acquired infections may have been missed. We used simulations to estimate the total number (identified and unidentified) of symptomatic hospital-acquired infections, as well as infections due to onward community transmission from missed hospital-acquired infections, to 31st July 2020. RESULTS: In our dataset of hospitalised COVID-19 patients in acute English hospitals with a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired. We estimated that only 30% (range across weeks and 200 simulations: 20-41%) of symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95% range over 200 simulations: 14.1-15.8%) of cases currently classified as community-acquired COVID-19 potentially linked to hospital transmission. We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900 (15,200-16,400) or 20.1% (19.2-20.7%) of all identified hospitalised COVID-19 cases. CONCLUSIONS: Transmission of SARS-CoV-2 to hospitalised patients likely caused approximately a fifth of identified cases of hospitalised COVID-19 in the "first wave" in England, but less than 1% of all infections in England. Using time to symptom onset from admission for inpatients as a detection method likely misses a substantial proportion (> 60%) of hospital-acquired infections

    The contribution of hospital-acquired infections to the COVID-19 epidemic in England in the first half of 2020

    Get PDF
    Background: SARS-CoV-2 is known to transmit in hospital settings, but the contribution of infections acquired in hospitals to the epidemic at a national scale is unknown. Methods: We used comprehensive national English datasets to determine the number of COVID-19 patients with identified hospital-acquired infections (with symptom onset > 7 days after admission and before discharge) in acute English hospitals up to August 2020. As patients may leave the hospital prior to detection of infection or have rapid symptom onset, we combined measures of the length of stay and the incubation period distribution to estimate how many hospital-acquired infections may have been missed. We used simulations to estimate the total number (identified and unidentified) of symptomatic hospital-acquired infections, as well as infections due to onward community transmission from missed hospital-acquired infections, to 31st July 2020. Results: In our dataset of hospitalised COVID-19 patients in acute English hospitals with a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired. We estimated that only 30% (range across weeks and 200 simulations: 20–41%) of symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95% range over 200 simulations: 14.1–15.8%) of cases currently classified as community-acquired COVID-19 potentially linked to hospital transmission. We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900 (15,200–16,400) or 20.1% (19.2–20.7%) of all identified hospitalised COVID-19 cases. Conclusions: Transmission of SARS-CoV-2 to hospitalised patients likely caused approximately a fifth of identified cases of hospitalised COVID-19 in the “first wave” in England, but less than 1% of all infections in England. Using time to symptom onset from admission for inpatients as a detection method likely misses a substantial proportion (> 60%) of hospital-acquired infections

    Contagions under control: Mathematical models to inform infectious disease prevention and control

    No full text
    In this thesis, we elucidate the important role of mathematical models for infectious disease control with a focus on the transmission of SARS-CoV-2 in the community and in hospital settings, as well as the transmission of Pseudomonas aeruginosa in intensive care units. Most important findings: Self-imposed measures (hand washing, mask-wearing, physical distancing) as a reaction to an ongoing COVID-19 epidemic can be effective in mitigating and delaying it. They can even prevent a large epidemic if they are adopted fast and if the measure has a high efficacy. Hand hygiene may be optimized by the frequency and the moment at which it is applied to reduce viral respiratory tract infections. We found that immediate hand washing after contamination is consistently more effective than at fixed time intervals. Many hospital-acquired COVID-19 cases may remain unidentified if their definition relies on a cutoff of days after symptom onset: Patients may be discharged or have a symptom onset prior to the cutoff. Screening or quarantining hospital patients at discharge may be effective in preventing further transmissions into the community. In our simulation study, the use of highly effective personal protective equipment in all hospital wards was the most effective intervention to limit SARS-CoV-2 transmission in hospitals. We highlighted the role of contact tracing beyond community settings since it can detect more infections among tested individuals than regular screening interventions. We modeled environmental contamination as a transmission route for Pseudomonas aeruginosa and showed that its contribution depends on the specific setting

    Inference for Ordinal Log-Linear Models Based on Algebraic Statistics

    No full text

    Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models

    No full text
    Pseudomonas aeruginosa (P. aeruginosa) is an important cause of healthcare-associated infections, particularly in immunocompromised patients. Understanding how this multi-drug resistant pathogen is transmitted within intensive care units (ICUs) is crucial for devising and evaluating successful control strategies. While it is known that moist environments serve as natural reservoirs for P. aeruginosa, there is little quantitative evidence regarding the contribution of environmental contamination to its transmission within ICUs. Previous studies on other nosocomial pathogens rely on deploying specific values for environmental parameters derived from costly and laborious genotyping. Using solely longitudinal surveillance data, we estimated the relative importance of P. aeruginosa transmission routes by exploiting the fact that different routes cause different pattern of fluctuations in the prevalence. We developed a mathematical model including background transmission, cross-transmission and environmental contamination. Patients contribute to a pool of pathogens by shedding bacteria to the environment. Natural decay and cleaning of the environment lead to a reduction of that pool. By assigning the bacterial load shed during an ICU stay to cross-transmission, we were able to disentangle environmental contamination during and after a patient's stay. Based on a data-augmented Markov Chain Monte Carlo method the relative importance of the considered acquisition routes is determined for two ICUs of the University hospital in Besançon (France). We used information about the admission and discharge days, screening days and screening results of the ICU patients. Both background and cross-transmission play a significant role in the transmission process in both ICUs. In contrast, only about 1% of the total transmissions were due to environmental contamination after discharge. Based on longitudinal surveillance data, we conclude that cleaning improvement of the environment after discharge might have only a limited impact regarding the prevention of P.A. infections in the two considered ICUs of the University hospital in Besançon. Our model was developed for P. aeruginosa but can be easily applied to other pathogens as well

    Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study.

    No full text
    BackgroundThe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every country in the world since it first emerged in China in December 2019. Many countries have implemented social distancing as a measure to "flatten the curve" of the ongoing epidemics. Evaluation of the impact of government-imposed social distancing and of other measures to control further spread of COVID-19 is urgent, especially because of the large societal and economic impact of the former. The aim of this study was to compare the individual and combined effectiveness of self-imposed prevention measures and of short-term government-imposed social distancing in mitigating, delaying, or preventing a COVID-19 epidemic.Methods and findingsWe developed a deterministic compartmental transmission model of SARS-CoV-2 in a population stratified by disease status (susceptible, exposed, infectious with mild or severe disease, diagnosed, and recovered) and disease awareness status (aware and unaware) due to the spread of COVID-19. Self-imposed measures were assumed to be taken by disease-aware individuals and included handwashing, mask-wearing, and social distancing. Government-imposed social distancing reduced the contact rate of individuals irrespective of their disease or awareness status. The model was parameterized using current best estimates of key epidemiological parameters from COVID-19 clinical studies. The model outcomes included the peak number of diagnoses, attack rate, and time until the peak number of diagnoses. For fast awareness spread in the population, self-imposed measures can significantly reduce the attack rate and diminish and postpone the peak number of diagnoses. We estimate that a large epidemic can be prevented if the efficacy of these measures exceeds 50%. For slow awareness spread, self-imposed measures reduce the peak number of diagnoses and attack rate but do not affect the timing of the peak. Early implementation of short-term government-imposed social distancing alone is estimated to delay (by at most 7 months for a 3-month intervention) but not to reduce the peak. The delay can be even longer and the height of the peak can be additionally reduced if this intervention is combined with self-imposed measures that are continued after government-imposed social distancing has been lifted. Our analyses are limited in that they do not account for stochasticity, demographics, heterogeneities in contact patterns or mixing, spatial effects, imperfect isolation of individuals with severe disease, and reinfection with COVID-19.ConclusionsOur results suggest that information dissemination about COVID-19, which causes individual adoption of handwashing, mask-wearing, and social distancing, can be an effective strategy to mitigate and delay the epidemic. Early initiated short-term government-imposed social distancing can buy time for healthcare systems to prepare for an increasing COVID-19 burden. We stress the importance of disease awareness in controlling the ongoing epidemic and recommend that, in addition to policies on social distancing, governments and public health institutions mobilize people to adopt self-imposed measures with proven efficacy in order to successfully tackle COVID-19
    corecore