203 research outputs found

    IL NUOVO VOLTO DELLA GIURISDIZIONE “IN EXECUTIVIS” Tra crisi di identità e prospettive di riforma

    Get PDF
    Il presente lavoro tenta di eseguire una ricognizione dei nuovi poteri che, le Sezioni Unite, hanno riconosciuto in capo al giudice dell'esecuzione penale. Ciò in riposta alle pressioni provenienti da Strasburgo, di una maggiore tutela dei diritti fondamentali, di cui fa parte la libertà personale. Diritto pregiudicato da una disciplina rigida, che non permette modificazioni del trattamento sanzionatorio una volta che la sentenza di condanna acquista i crismi della "cosa giudicata". Pressati dalla necessità di conformarsi alle pronunce di Strasburgo e della Corte costituzionale, i giudici di legittimità, pur in assenza di una espressa disposizione normativa, hanno cercato la strada per riportare nell’alveo della legalità le pene inflitte sulla base di norme dichiarate incostituzionali. Ripercorrendo i momenti salienti della giurisprudenza degli ultimi 5-6 anni, si analizza l’opera di equilibrismo della Corte di Cassazione che, in definitiva, ha portato ad una progressiva demolizione del mito dell’intangibilità del giudicato; affermando la supremazia del diritto fondamentale della libertà personale su quello di stabilità dei rapporti giuridici. Per realizzare questa finalità, i giudici, hanno rinvenuto, attraverso un’interpretazione a maglie molto larghe delle previsioni del codice di procedura penale, nel giudice dell’esecuzione, l’organo deputato alle necessarie modifiche della pena

    Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma

    Get PDF
    Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance

    Lattice chiral symmetry, CP-violation and Majorana fermions

    Get PDF
    A brief summary of lattice fermions defined by the general Ginsparg-Wilson algebra is first given. It is then shown that those general class of fermion operators have a conflict with CP invariance in chiral gauge theory and with the definition of Majorana fermions in the presence of chiral-symmetric Yukawa couplings. The same conclusion holds for the domain-wall fermion also

    Development of an experimental platform for the investigation of laser-plasma interaction in conditions relevant to shock ignition regime

    Full text link
    The shock ignition (SI) approach to inertial confinement fusion is a promising scheme for achieving energy production by nuclear fusion. SI relies on using a high intensity laser pulse (≈1016 W/cm2, with a duration of several hundred ps) at the end of the fuel compression stage. However, during laser-plasma interaction (LPI), several parametric instabilities, such as stimulated Raman scattering and two plasmon decay, nonlinearly generate hot electrons (HEs). The whole behavior of HE under SI conditions, including their generation, transport, and final absorption, is still unclear and needs further experimental investigation. This paper focuses on the development of an experimental platform for SI-related experiments, which simultaneously makes use of multiple diagnostics to characterize LPI and HE generation, transport, and energy deposition. Such diagnostics include optical spectrometers, streaked optical shadowgraph, an x-ray pinhole camera, a two-dimensional x-ray imager, a Cu Kα line spectrometer, two hot-electron spectrometers, a hard x-ray (bremsstrahlung) detector, and a streaked optical pyrometer. Diagnostics successfully operated simultaneously in single-shot mode, revealing the features of HEs under SI-relevant conditions.T. Tamagawa, Y. Hironaka, K. Kawasaki, D. Tanaka, T. Idesaka, N. Ozaki, R. Kodama, R. Takizawa, S. Fujioka, A. Yogo, D. Batani, Ph. Nicolai, G. Cristoforetti, P. Koester, L. A. Gizzi, and K. Shigemori, "Development of an experimental platform for the investigation of laser–plasma interaction in conditions relevant to shock ignition regime", Review of Scientific Instruments 93, 063505 (2022) https://doi.org/10.1063/5.008996

    Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

    Get PDF
    Background: There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods: We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results: PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion: Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods, and were differently related to local traffic and meteorology. Our results indicate a need for multi-pollutant exposure modeling to disentangle causal agents in epidemiological studies, and further investigation of site-specific and meteorological modification of the traffic-concentration relationship in urban neighborhoods

    Residential exposure to motor vehicle emissions and the risk of wheezing among 7-8 year-old schoolchildren: a city-wide cross-sectional study in Nicosia, Cyprus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have reported associations between respiratory outcomes in children and a range of self-reported, administrative or geographical indicators of traffic pollution. First-time investigation into the frequency of asthmatic symptoms among 7-8 year-old Cypriot children in 1999-2000 showed increased prevalence in the capital Nicosia compared to other areas. Geographical differences on an island the size of Cyprus may reflect environmental and/or lifestyle factors. This study investigates the relationship between self-reported symptoms and residential exposure to motor vehicle emissions among Nicosia schoolchildren.</p> <p>Methods</p> <p>The addresses of children in the metropolitan area of Nicosia who participated in the original survey (N = 1,735) were geo-coded and the level of exposure of each child was assessed using distance- and emission-based indicators (i.e. estimated levels of particulate matter and nitrogen oxides emissions due to motor vehicles on main roads around the residence). Odds ratios of wheezing and asthma diagnosis in relation to levels of exposure were estimated in logistic regression models adjusting for person-based factors, co-morbidity and intra-school clustering.</p> <p>Results</p> <p>We found an increased risk of wheezing at distances less than 50 m from a main road and/or only among those experiencing the highest levels of exposure. The strongest effect estimates were observed when exposure was defined in terms of the cumulative burden at all roads around the residence. Adjusted odds ratios for current wheezing were 2.33 (95% CI 1.27, 4.30) amongst the quartile of participants exposed to the highest levels of PM at all roads 50 m of their residence and 2.14 (95% CI 1.05, 4.35) for NOx, with no effect at intermediate levels of exposure. While the direction of effect was apparent at longer distances, differences were generally not statistically significant.</p> <p>Conclusions</p> <p>Children experiencing the highest burden of emissions in Nicosia seem to be at a higher risk of reporting asthmatic symptoms. Due to the small number of children residing at close proximity to main roads and lack of evidence of risk at intermediate levels of exposure or longer distances, the observed pattern alone does not explain the generally higher prevalence observed in urban Nicosia compared to other areas.</p

    Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: a cross-sectional study

    Get PDF
    BACKGROUND: Most studies having shown respiratory health effects from traffic exhaust were conducted in urban areas with a complex mixture of air pollution sources. This study has investigated the potential impact of traffic exhaust on respiratory symptoms among adults living along a Swiss alpine highway corridor, where traffic exhaust from the respective trans-Alpine highway is the predominant source of air pollution. METHODS: In summer 2005, we recruited 1839 adults aged 15 to 70 from a random sample of 10 communities along the Swiss alpine highway corridors. Subjects answered a questionnaire on respiratory health (asthmatic and bronchitic symptoms), risk factors, and potential confounding variables. We used logistic regression models to assess associations between respiratory symptoms and traffic exposure being defined a) as living within 200 m of the highway, and b) as a bell-shaped function simulating the decrease of pollution levels with increasing distance to the highway. RESULTS: Positive associations were found between living close to a highway and wheezing without cold (OR = 3.10, 95%-CI: 1.27-7.55) and chronic cough (OR = 2.88, 95%-CI: 1.17-7.05). The models using a bell-shaped function suggested that symptoms reached background levels after 400-500 m from the highway. The association with chronic cough was driven by a subgroup reporting hay fever or allergic rhinitis. CONCLUSIONS: Highway traffic exhaust in alpine highway corridors, in the absence of other industrial sources, showed negative associations with the respiratory health of adults, higher than those previously found in urban areas

    Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    Get PDF
    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity

    Investigation on the origin of hot electrons in laser plasma interaction at shock ignition intensities

    Get PDF
    Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of 10 16 W/cm 2 . In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves. The temperature dependence of laser plasma instabilities was also investigated, enabled by the use of different ablator materials, suggesting that Two Plasmon Decay is damped at earlier times for higher plasma temperatures, accompanied by an earlier ignition of SRS. The identification of the predominant hot electron source and the effect of plasma temperature on laser plasma interaction, here investigated, are extremely useful for developing the mitigation strategies for reducing the impact of hot electrons on the fuel ignition
    corecore