327 research outputs found

    Terminal Ligand and Packing Effects on Slow Relaxation in an Isostructural Set of [Dy(H2_{2}dapp)X2_{2}]+ Single Molecule Magnets**

    Get PDF
    Three new dysprosium complexes with a pentadentate ligand occupying five equatorial sites differ only in the nature of the axial ligands. These help tune the relaxation properties as judged by an analysis of the AC susceptibility data. More in depth analysis by using two recently suggested fitting equations lead to similar outcomes for all three systems. As a further contribution to the relaxation pathway involving the phonon bath it is concluded that a short nitrate-nitrate interaction between molecules helps dampen the spin phonon coupling. We report three structurally related single ion Dy compounds using the pentadentate ligand 2,6-bis((E)-1-(2-(pyridin-2-yl)-hydrazineylidene)ethyl)pyridine (H2_{2}dapp) [Dy(H2_{2}dapp)(NO3_{3})2_{2}]NO3_{3} (1), [Dy(H2_{2}dapp)(OAc)2_{2}]Cl (2) and [Dy(H2_{2}dapp)(NO3_{3})2_{2}]Cl0.92_{0.92}(NO3_{3})0.08_{0.08} (3). The (H2_{2}dapp) occupies a helical twisted pentagonal equatorial arrangement with two anionic ligands in the axial positions. Further influence on the electronic and magnetic structure is provided by a closely associated counterion interacting with the central N−H group of the (H2_{2}dapp). The slow relaxation of the magnetisation shows that the anionic acetates give the greatest slowing down of the magnetisation reversal. Further influence on the relaxation properties of compounds1 and 2 is the presence of short nitrate-nitrate intermolecular ligand contact opening further lattice relaxation pathways

    APC/CCdh1-Mediated Degradation of the F-Box Protein NIPA Is Regulated by Its Association with Skp1

    Get PDF
    NIPA (Nuclear Interaction Partner of Alk kinase) is an F-box like protein that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity of the SCFNIPA E3 ligase is regulated by cell-cycle-dependent phosphorylation of NIPA, restricting substrate ubiquitination to interphase. Here we show that phosphorylated NIPA is degraded in late mitosis in an APC/CCdh1-dependent manner. Binding of the unphosphorylated form of NIPA to Skp1 interferes with binding to the APC/C-adaptor protein Cdh1 and therefore protects unphosphorylated NIPA from degradation in interphase. Our data thus define a novel mode of regulating APC/C-mediated ubiquitination

    SProtP: A Web Server to Recognize Those Short-Lived Proteins Based on Sequence-Derived Features in Human Cells

    Get PDF
    Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users

    Specific oligomerization of the 5-HT1A receptor in the plasma membrane

    Get PDF
    In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT1A receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction

    Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering

    Get PDF
    A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture

    Polo-Like Kinase-1 Controls Aurora A Destruction by Activating APC/C-Cdh1

    Get PDF
    Polo-like kinase-1 (Plk1) is activated before mitosis by Aurora A and its cofactor Bora. In mitosis, Bora is degraded in a manner dependent on Plk1 kinase activity and the E3 ubiquitin ligase SCF-βTrCP. Here, we show that Plk1 is also required for the timely destruction of its activator Aurora A in late anaphase. It has been shown that Aurora A destruction is controlled by the auxiliary subunit Cdh1 of the Anaphase-Promoting Complex/Cyclosome (APC/C). Remarkably, we found that Plk1-depletion prevented the efficient dephosphorylation of Cdh1 during mitotic exit. Plk1 mediated its effect on Cdh1, at least in part, through direct phosphorylation of the human phosphatase Cdc14A, controlling the phosphorylation state of Cdh1. We conclude that Plk1 facilitates efficient Aurora A degradation through APC/C-Cdh1 activation after mitosis, with a potential role for hCdc14A

    Conserved CDC20 Cell Cycle Functions Are Carried out by Two of the Five Isoforms in Arabidopsis thaliana

    Get PDF
    The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes

    Expression of Constitutively Active CDK1 Stabilizes APC-Cdh1 Substrates and Potentiates Premature Spindle Assembly and Checkpoint Function in G1 Cells

    Get PDF
    Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1), followed by its inactivation through the anaphase-promoting complex (APC)/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF) in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We propose that this more subtle type of defect in activity of the APC-driven negative-feedback loop may have implications for triggering genome instability and tumorigenesis
    corecore