83 research outputs found

    A PLI Computer Program for Hidden Line Elimination

    Get PDF
    The elimination of lines not normally viewed during a visual perception of a three-dimensional object that is being simulated on a computer graphics display is called hidden line elimination (Fig. 1). My project consists of a PL-1 computer program which implements an algorithm for hidden line elimination written by A. Montanari and R. Galemberti published in the April 1969 issue of the Communications of the ACM

    Nitrogen Oxides and Ozones from B-747 Measurements (NOXAR) during POLINAT 2 and SONEX: Overview and Case-Studies on Continental and Marine Convection

    Get PDF
    In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn

    Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia

    Get PDF
    Background: Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3-18 years) with relapsed or therapy-refractory malignancies. Results: A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m(2)/day with weekly dose escalations of 50 mg/m(2) until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m(2)/day was determined (maximum, 580 mg/m(2)/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher C-max. Five patients achieved prolonged disease control (> 12 months) and showed a higher C-max (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion: An SDR of 130 mg/m(2)/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur

    Joint Binding of OTX2 and MYC in Promotor Regions Is Associated with High Gene Expression in Medulloblastoma

    Get PDF
    Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around −250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma

    Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC)

    Get PDF
    Background NSCLC exhibits considerable heterogeneity in its sensitivity to chemotherapy and similar heterogeneity is noted in vitro in a variety of model systems. This study has tested the hypothesis that the molecular basis of the observed in vitro chemosensitivity of NSCLC lies within the known resistance mechanisms inherent to these patients' tumors. Methods The chemosensitivity of a series of 49 NSCLC tumors was assessed using the ATP-based tumor chemosensitivity assay (ATP-TCA) and compared with quantitative expression of resistance genes measured by RT-PCR in a Taqman Array™ following extraction of RNA from formalin-fixed paraffin-embedded (FFPE) tissue. Results There was considerable heterogeneity between tumors within the ATP-TCA, and while this showed no direct correlation with individual gene expression, there was strong correlation of multi-gene signatures for many of the single agents and combinations tested. For instance, docetaxel activity showed some dependence on the expression of drug pumps, while cisplatin activity showed some dependence on DNA repair enzyme expression. Activity of both drugs was influenced more strongly still by the expression of anti- and pro-apoptotic genes by the tumor for both docetaxel and cisplatin. The doublet combinations of cisplatin with gemcitabine and cisplatin with docetaxel showed gene expression signatures incorporating resistance mechanisms for both agents. Conclusion Genes predicted to be involved in known mechanisms drug sensitivity and resistance correlate well with in vitro chemosensitivity and may allow the definition of predictive signatures to guide individualized chemotherapy in lung cancer

    Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions

    Get PDF
    Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    Get PDF
    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov

    The G-protein Alpha Subunit Gsα Is A Tumor Suppressor In Sonic Hedgehog-driven Medulloblastoma

    Get PDF
    Medulloblastoma, the most common malignant childhood brain tumor, exhibits distinct molecular subtypes and cellular origins. Genetic alterations driving medulloblastoma initiation and progression remain poorly understood. Herein, we identify GNAS, encoding the G-protein Gsα, as a potent tumor suppressor gene that defines a subset of aggressive Sonic Hedgehog (Shh)-driven human medulloblastomas. Ablation of the single Gnas gene in anatomically-distinct progenitors is sufficient to induce Shh-associated medulloblastomas, which recapitulate their human counterparts. Gsα is highly enriched at the primary cilium of granule neuron precursors and suppresses Shh-signaling by regulating both the cAMP-dependent pathway and ciliary trafficking of Hedgehog pathway components. Elevation of a Gsα effector, cAMP, effectively inhibits tumor cell proliferation and progression in Gnas mutants. Thus, our gain- and loss-of-function studies identify a previously unrecognized tumor suppressor function for Gsα that acts as a molecular link across Shh-group medulloblastomas of disparate cellular and anatomical origins, illuminating G-protein modulation as a potential therapeutic avenue
    corecore