
A PLl CONPUTER PROGRAH FOR
HIDDEN LINE ELININATION

By

Dennis M. Pfister

SECTION

I.

II.

III.

IV.

v.
VI.

TABLE OF CONTENTS

INTRODUCTION •

DEFINITIONS • • • 0 •

DESCRIPTION OF THE ALGORITHM •••••••••••••••e

IMPLEMENTATION OF THE ALGORITHM •••••o•••••••

DATA ELEMENTS OF THE PROGRM~ ••••••••••••••••

THE PROGRAM •••••••••••••••••••••••••••••••••

APPENDIX • • • • • • 0 •

i

PAGE

1

3

7

12

14

18

26

BIBLIOGRAPHY • 37

•

INTRODUCTION

The elimination of lines not normally viewed during

a visual perception of a three-dimensional object that is

being simulated on a computer graphics display is called

hidden line elimination (Fig. 1). My project consists of

a PL-1 computer program which impl~ments an algorithm for

hidden line elimination written by A. Montanari and R.

Galemberti published in the April 1969 issue of the

Communications of the ACM •

1

•

ii

LIST OF FIGURES

FIGURE PAGE

1. Objects With and Without Hidden Line Elimina-
tion • 2

2. Convex and Concave Objects ••••••••••••••••••• 4

J, Projection of Object to the Viewplane •••••••• 5

4, Pictorial Representation of Convex and
Concave Edges ••••o••••••••••••••••••••••••••• 9

5. Erasing Hidden Lines ••••••••••••••••••••••••• 11

6. Pictorial Representation of List Processing •o 13

?. Flow Chart of Program •••••••••••••••••••••••• 25

•

•
(a)

(b)

Fig. 1 (a) Object without hidden line elimination.

(b) Object with hidden line elimination.

2

•

•

•

DEFINITIONS

In order to discuss and have an understanding of

three-dimensional objects and their projection on a com

puter graphics view screen some preliminary definitions

are in order.

3

All objects in three-dimensional space are bounded by

portions of a plane which are called faces. All faces are

always considered closed. The volume of an object is the

area enclosed by all the faces of an object.

A three-dimensional object is either convex or con

cave. A convex object is an obj~ct that when a plane

without bound is laid on any face of that object the

plane does not intersect the volume of that object (Fig.

2a). A concave object is an object that when a plane

without bound is laid on any face of that object that

plane intersects the volume of that object (Fig. 2b).

Objects which are both convex and concave will be consi

dered concave in this paper.

Faces are considered on-view if they are not hidden

by their own volume; otherwise, a face is considered off

view. Each face consists of edges and each edge has two

end points called nodes. Every edge belongs to two faces.

The view-plane is an imaginary plane placed between

the viewer and the object, and which also corresponds to

the picture tube of the graphics terminal (Fig. 3) •

•

•

•

4

(a)

(b)

Fig. 2 (a) An example of a convex object. (b) An example

of a concave objecto The necessity of hidden line elimina

tion as an object becomes increasingly complex can readily

be seen here.

• • -

<§

Viewplane

y

z

Fig. 3 Projection of an object to the viewplane . "'

•

•

•

The view-point of the observer is called Z0 • On the

view-plane all faces are projected into polygons and all

edges into segments, and nodes into vertices (Fig. 3).

A convex dihedral is formed by convex faces sharing

a common edge. A concave dihedral is formed by two con

cave faces sharing a common edge. An edge is convex if

it corresponds to a convex dihedral; otherwise, it is

concaveo A node is concave if it belongs to at least one

concave edge; otherwise, it is convex •

6

•

•

DESCRIPTION OF THE ALGORITHM

The algorithm consists of two main steps . Step one

is to determine if an edge belongs to a convex or concave

dihedral. This step is necessary to determine if an ob-

ject is convex or concave , In the second step all edges

hidden by their own volume are eliminated . This is the

actual process of eliminating hidden lines ,

In order to determine whether an edge is concave or

convex it is first necessary to determine the inward nor

mal vectors of the two faces belonging to the edge in

question. This is done for every face of the object .

7

Let j be the list of faces of an object , where j runs

from 1 to the number of faces of the object, and let A. be
J

the area of any face j . Let n. be the normal vector to a
J

face j, and hj be the number of nodes ,of face j . Let P j ,k

stand for the list of nodes of any face j , where k = l ••• h.,
J

and where the nodes of every face are numbered in a clock-

wise direction around the face keeping the perimeter of the

face on your right . Now using the formulas

h. -1
2Ajnj = ~ (P j , k - p. 1) X (Pj , k+l - P. 1) (1)

J ' J '
2

n. = 2A.n./2A.n.
J J J J J

we can compute the inward normal vector to any face j .

Now let (Ps - Pr) be an edge vector we wish to investigate

•

•

•

for convexity or concavity, where s) r, and let j 1 and j 2

be the faces that share (Ps-Pr) as a common edge. J 1 is

the face belonging to (P
8
-Pr) and j 2 belongs to the edge

(Pr-P 8) (Fig. 4a). Now let njl and nj 2 be the inward

normal vectors to j1 and j 2 respectively. Now by taking

the edge vector (P8 -Pr) and the vector cross product of

njl and nj2 and find the vector dot product of these two

quantities we have

c = { P s -- - P r) • (n j 1 X n j 2)

and if c) 0 the edge is concave; otherwise, it is convex.

8

This can readily be seen by noting that the normal vectors

of each face belonging to the edge (P 8 -Pr) are each of unit

length and therefore their vector cross product (noting

that njl is always crossed into nj 2) is either a positive

or negative unit vector lying on the same axis as (Ps-Pr)

(Fig. 4b). Now applying the previous formula it can be

seen that c can only be positive or negative and denotes

whether an edge corresponds to a convex or concave dihedral.

It is necessary to perform this procedure once for each ob-

ject.

The elimination of edges hidden by their own volume is

the second and final step of the algorithm. Let j now be

a polygon on the picture plane corresponding to a face j

in three-dimensional space. Let nodes Pj,k be projected

into vertices V. k to the view plane (remembering that
J '

nodes become vertices on the view plane). Now by replacing

•

•

9

r r

r

s

(Ps - Pr)
Fig. 4 (a) The direction of the edge vectors of jl and j

2
respectively (b) Pictorial representation of determination

of convex and concave edges. Remembering that all normal

vectors are inward and jl is always crossed into j 2 •

•

•

Pj,k with its corresponding Vj,k in equation one we have

2A.m. = ~j-l (V. k- v. 1) X (V~,k+l- VJ·,l)
J J ~2 J, J, J

m. = 2A.m./2A·m·
J J J J J

10

which results in a normal unit vector m; which is perpen-

dicular to the picture plane, thus mj has only one component

and this component is on the z axis only. Now if Z
0

• mj< 0

(recalling that Z
0

is the view point) the face j is on view;

otherwise, it is off view (Fig. 5). Now, any segment be

longing to two off view faces is erased. As we are only

dealing with convex objects the object can now be displayed

and it will contain no hidden lines. The previous procedure

must be performed for each different projection of the ob-

ject •

•

•

11

B
F

c A D

E

View-plane

Fig. 5 Z
0

is considered in front of the page . Faces C,

F, and E are off view because their corresponding polygons

have normal vectors which also point out of the page . When

these normals are dotted with Z
0

the quantity is positive;

therefore, these faces are off view o Any segment that

shares two off view faces is erased, these segments are

indicated by the arrows .

•

•

12

IMPLEMENTATION OF THE ALGORirr;HM

Throughout the program all data, other than working

storage items, are arranged in the form of structures with

each struc·ture forming an element of a linked list. A

brief descri~tion of this type of data structure will be

given for those who may not be familiar with it . First a

linked list has what is termed a head and a tail, these

correspond to a beginning and an end of a list. The head

of a list contains what is called a pointer, which is

nothing more than the address of the next data element in

the list.
, .

in the list contains of these Every 1tem one

pointers which points to the next item in the list (Fig .

6). In this way it is a simple matter to add or delete

any element of the linked list by altering the appropriate

pointer •

13

Head of the list

(a)

Tail of the list

(b) (c) (d)

Fig. 6 (a) The circle stands for a single data item in a

linked list which could be for example a structure, a single

data item, or an entire array. (b) A typical linked list

data arrangement. (c) To delete an item from a linked list,

for example item B in our list, we merely change the pointer

of item A so that it contains the address of item C instead

of that of item B. Now as we proceed from the head of the

list to the tail of the list item C will be the next item.

(d) To add an item to the list, let us say B', we set the

pointer of B' to point at C (contain the address of C) and

set the pointer of B to contain the address of B'.

•

•

14

DATA ELEMENTS OF THE PROGRAM

The hidden line program is designed as an external

procedure so that hidden line elimination may be imple

mented as needed by the user . As it is designed to supple

ment other computer graphics programs it is necessary to

know the data items required by it and what type of arrange

ment they should have . It is a ~equirement of PL-1 that

all data elements which are used by both a main procedure

and an external procedure be identically declared and struc-

tured therefore care must be taken when duplicating the

data section of this procedure. Examples of creating the

l inked lists necessary for the program can be seen in the

graphics program written by Mr . Neil Webre that is used

as the calling procedure for the hidden line procedure

described here, it is included in the computer programs

listed in the back of this report .

Also it must be noted that it is the responsibility

of the user to transpose the nodes of the object to the

view-plane, create the face , vertex and vertex pointer

lists. Also Z must be supplied by the user . The POINT
0

list and EDGE list is created by the hidden line program.

The edge list is only created once and the POINT list is

recreated for each new projection of the object to the

view-plane .

A detailed listing of all data elements used in the

•

•

15

program is now given.

Each node is listed in a structure labeled VERTEX under

the name of POINT. POINT is broken down further to contain

the nodes three-dimensional coordinates. This breakdown is

XN, YN and ZN. A nodes transpose to the view plane is also

contained in the structure under the label of TRAN. TRAN

is broken down further to XP, YP and ZP which are the co

ordinates of the transpose . NEXT contains the pointer which

is the address of the next node structure in the linked

list. CON provides storage for an indicator which if it

contains a 1 the node is concave and if it zero the node

is convex. The internal name of the node, and integer,

is stored under VERTEX_ID •

Edges are also stored in a linked list data arrange

ment labeled EDGES. END(2) is a one-dimensional two ele

ment pointer which contains the addresses of the two nodes

which form the edge . OFF_VIEW_FLAG is used as a marker

also, if it c"Ontains a 1 the edge is off view, if it con

tains a zero the edge is on view . EDGE_VECTOR is the

vector difference of the two nodes, which are also vec

tors, and the resultant components are stored in EDGE_

VECTOR's breakdown XE, YE, and ZE, NEXT_EDGE is a pointer

that contains the address of the next element in the edge

list. FACE_LIST(2) is a one-dimensional two element array

with FACE_LIST(l) containing the address of the face name

corresponding to j
1

of the edge and FACE_LIST(2) containing

•

•

16

the face name corresponding to j 2 of the edge . CONCAVITY_

TEST is used also as a marker, if it contains a 1 the edge

is concave , if it contains a zero it is convex.

Face data is also in the form of a linked list with

each face having its necessary data arranged in structure

form. The structure name is FACE. FACE_NAME contains an

integer which represents the name of a face . NORMAL_VECTOR

contains the vector components of the inward normal vector

of the face, these are stored in EYE, JAY and KAY . ON_OFF_

VIEW I is an indicator quantity which contains a zero if

the face is on view and a 1 if it is off view. NEXT_FACE

is a pointer that contains the address of the next face in

the linked list . Nillft._VERX contains the number of nodes the

face consists of . VERTEX_LABEL_LIST is a one - dimensional

sixteen element array which contains the name (VERTEX ID)

of each node belonging to the face .

POINT is the last of the linked list data items of

the program . POINT is the list from which the object is

displayed o The head and tail (HEADF and TAILF) of POINT

is declared external , this is done to allow manipulation

of POINT without passing parameters between procedures .

Contained in POINT is POINTS which is broken down into

XI,YI,XF and YF which are the coordinates of the line to

be displayed . NEXT_POINT is a pointer containing the

address of the next point in the POINT list .

The remaining quantities are used as working storage

•

•

•

17

items which provide the necessary temporary storage loca

tions for various insundry calculations and operations,

•

•

18

THE PROGRM~

The first step of the program is identical to that of

the algorithm, that is, the determination of convex and

concave edges. This step can be completely eliminated if

the object is known to be completely convex. However as

this step is only executed once for any object the computer

time that would be lost by its inclusion would be very

small. The logic necessary to implement this section of

the algorithm is contained from statement number 17 thru

statement number 67.

The second step of the algorithm is implemented at the

entry point HIDE and continues to the end of the program •

This section handles the actual elimination of hidden lines.

After the data has been correctly set up it is only necessary

to call HIDE once for each different projection of the same

object. HIDE will then return a POINT list which will be

a list of all the line segments to be displayed.

A general account of what each section of the program

performs will now be given. A more detailed account is

given through the use of a flow chart of the program (Figo

7). If even a more detailed account is necessary it is

easy to follow the logic of each section of the program

as it has been written in a straightforward manner. This

is especially easy to follow once the purpose of each

section is known. From statement number 17 to statement

•

•

•

19

number 42 we calculate the components of the normal vector

of each face of the object. From statement number 43 thru

52 we establish the components of the edge vectors . Whether

an edge is convex or concave is determined from statements

53 thru 67.

HIDE, where the actual elimination takes place begins

at statement number 68 . On view and off view faces are

determined from statement numbers 68 thru 98. Statement

numbers 99 thru 114 establishes whether an edge is on view

or off view. Statement numbers 115 thru 135 create the list

of edges which are to be displayed •

•

•

•

Begin
Solve

Set Q = HEAD_FACE

Establish inward normal
vector to face •

Yes

Set E = HEAD_EDGE

Establish components
of edge vector .

20

No

Set Q = NEXT_FACE

•

•

Set E = NEXT_EDGE

Set E = HEAD_EDGE

Find the cross
product of j 1 and j2

Determine 'c'

No

No

Yes

Edge is convex

22

• Edge is concave

Set E = NEXT_EDGE

No

•
Begin HIDE

Yes

• No

•

•

•

Free POINT
Set W = NEXT_POINT

Yes

Set HEADF and TAILF
equal to NULL

Set Q HEAD_FACE

Determine normal
vector to polygon

Dot normal vector
of polygon with

viewpoint

l

\

\
\

23

No

24

• No
Face is off view

Face is on view

Set Q = NEXT_FACE

•

Set E = HEAD_EDGE

•

•

•

••

Allocate POIN'l1

Set E = NEXT_EDGE

End
Return to calling

program

Yes

Fig . 7 Flow chart of program •

25

No

APPENDIX

•

•

26

(

Hidden line Program

(

PAGE 2

EFFECT *I

SPACE *I

SOL E: PROCED (E D_E GE ,HE _FAC , ;
ST LEV ·L EST

l AO_F } ;
2 1 OCL I l

I D F CE LISTS *I
3 1

I JECT I TH HI Ll E Ell I

LC T 1 ' I - s OF LI E S G E TS r E

I* POI TS LIST I
4 1 CL

I C ES I 3-0 SPACE *I
5 i OCL

I I

I* T E VE TICE~ TH if K
I* I F F F,

I IS N I E Of OFF

YE, 3 ZEt FLOAT BI
I *I

I* 0 - LIST *I

I . -DGt: *I
I* 1 l r c. IF C

""' EDGE IS c CAVE 0 CO VEX

J CT [N -D SPACE *I

' 3 Fl T Bl
I It:. I 3-D SPAC I

2
Fl T I ,

I* THE VIEW PLA *I

I lIST *I

I IS C CAV CO VEX *I
I*

I I
I (5) ;

7 1
I *I

I (1 j '
I

2
I 0 I

JAY, 3 KA¥) FLCAT IN,
I co R Al VECT I

2 FIXED BIN(1St,
I* FF VIE If 1*1
I CE IS VlE a~ OFF-VIE I

I* LI r *I

CE LIST "''/

S LVt: P OCcDU E(HEAD_EDGc,HE D_rACEl~

ST T LEVEL EST

9
l
11

2
13
1
17
18

l
2
21
22
2
24
2~

26
2

8
29

38

1

1

1
l
l
1
1 1

1 1
1 1
l 1
1
1 1
1 1

1

1 1
1 1
1 1
l 1

1
i
1
l
1
1
1

l

I* CO T A I S *I

, ,v) P l E

8[;
.... or ll T, E _fACE IS HEAD
r E R;

lO T I •

I DET I TIO f co VE 0 c VEX ED E I

= HEA _FACE;
BOU o: p = \/PL(VE TEX_lA E L_ L [S T (l J) ;

I = ; = . .,
0 u _v l -
= VPLlVE r -x_ L_llSTtii . ,

I v 0[FE E c ET EN G ES OF
Al =

2 = ->
3 = ->
= Pl VE TE _l EL_LIST(1+1

Bl = v ->
B2 = (v ->
B3 = (v ->
I FI p OOUCT CF DE v 1 RS *I
I = I

= J
=

... NO;
I , STABLlSHI G THE I WA 0 0 A VECTO "f A FACr *I
TE p = s T (.A,l+J J+K*K) ;
EYE = I/TE p;
JAY = J/TE p•

AY = /TE p;
= E r _F c ;

IF Q = NUll THE GC TO OUT;
GO T RE 0 NO;

I • H E Ll OF T I NO L v cro OF

I* ESTABLISHING HAT GOES AKE UP H T GES I

OUT: = EAO_ GE;

(

(

(

28

P Gf 4

HE T D F CES

S VE: P CEDURE E O_EOGE, EAD_FACEt;

r LrVEL

39 1 B cK: p =
4 1
41 1 X = -> X) ; .

42 1 YE -= -> y) ;
z = T -> z } ;

44 1 E = E;
4 1 = THE fO OLYG
47 1

I* DEl R I 'ATIO F VE NO C ED, S I

4 1
4
50 l
51 1

N 'A ORM l VECT

52 1
53 l -> ~ ;
54 1
55 1

6 1 = 1 ;
I* VEX LSE T IS cc CA E *I

5 t E;
59 1 IF ·- 0 TO 0 '_VI oc ss;
6 1 GO r F
62 1 0 _VIF. - p c s s: .3 T F I [s ;

I* F !1 I G VIE A D UFF IE' F CES *I

63 1 HIDE: E T Yl EAO _c:D E, EAD_fA E) ;
4 1 IF L..ADF = Ull T E ro UIT;

66 l F = HE ADF •
67 l = XT_POI T;

1
69 1 G TO 4 T;

1 l
72 1 T
7 L UIT: -= Ull;

4 l Q -= HE
75 1 UP: p = Pl(VERT_X_L BEL_l IST(t) ;
7 l KV = . ;
77 1 _ocF_ I = l ;

29

P GE

C R I ATES F

(

(

{

30

Calling Program

PAGE 2

,vz

AI l:PROCED JRE PTI S (MAIN);

ST T lEV L ES f

1

2
3
4
5

b .

7

9
1
11
1~

13

1 1

15
lc
17

18
19

2

21
22
23
24
25
26
21

2

2
3
31

32

1
1

l

1

1
1
1
1
l
1

l

1
l
1

l
l

1

l
1

l
1
1
1

1

1
1
1

1

1 IN:P. 0 E URE PTIONS tMAI

I* OECLARt THE V RIABLE ATTRIBUTES *I

DC L ! I N l T, I l l · I F 0 (31 l ;
uC l (R , S S, F I XE B I ~ (15) ;

C L (T T , P) PO I T E. ;
CL (lGSP,IuRAFO,I uSlt FIXt:D IN (31,);

OCL STPOS E TRY (,FLOAT BIN,FLOAT BINl;

0 L SDATL TRY (,FLCAT BI ,FLOAT BIN,FL AT BI ,fl T 61 t
DCL "/lTN TRY(,,FIXED B!N(3L),,FIXED BI { lt,FIXED BI (3
OCL MLITS T Y(,FIXED BIN(3l));
OCL UU POINTE ;

Cl NAT ' ENT Y(,fiXED BIN(31, ,FIXeD BlN(3ll, 9
Cl SG T ENTRY! I E BINt3l),F OAT BI ,FLUAT I ,
LO f Bl FLOAT BINt;

OCL(R AG,COS_PHI,Si _PHI,COS_TH TA,SIN_T ETA,URX, RY,URZ,V
UVX,UVY,UVZ,V AG, ~AG,O AG,TX,TY,TZ tFL OAT BI

OCl .D,PHI,THETA)fLCAT BI ;
OCL ARAYtlOt FIX D BI1 {31, t;

Cl T AG FLOAT IN;
OL.l ASTE FIXED BIN(1.5);

CL (OR,OO,OTHtTA,DP !~FLOAT BI~;

DCL (JPA,TPBJ FIXED BIN (31);

DCL (X,Y,Zt LO T IN,{l _O,...ES1fAG}f1 EO BI (1 l;

DCL (XT,YT)FLOAT BIN:
OCL (ALEVEL,Kt:Yt FIX 0 t31 (31,0), CYCle B IT{l);

Cl IGDS2 FIXED It f3l,Ot;
DC L F ll P I T 1 1 t I · l T I l (' ' 8 1 ;
DC L NULL 8 u I l T I I •

DCl (HE OF,TAILF XTERNAL P iNTeR;
DCL (H ADQ,TAil) POINT R;

0 l I D C H A R (3u t , (ti E 0 , T A I l) P 0 I T E R , P I T E R •
DEL Y FIXED B .IN;

Cl (LABEL,NVERT} BIN FIXED(l5t;
DCL VPL(l00) POINTER EXTERNAL;
DCL l PU!NT 8ASEO\F},

2 POiNTS,
(3 XI,3 YI, 3 XF, 3 VF) FLC T BI~,

2 EXT_PCi~T PCI~TER;

DC L 1 E OG BAS E 0 () ,
2 E~ (21 POINTE ,
2 CFF_VIE _FLAG FIXED BIN(l5),

2 EDG _VECTOR,
(3 XE, 3 YE, 3 ZEl FLOAT BI ,

L NE T_EDGE POINTE ,
2 FACE_LIST 2t POI TER,

31

(

IN:PROCEDURE OPT 0 S lM4I t;

ST T l VEL NEST

33

3

35
36
37
3
3q
4
41
42
43

44

45

4
47
4
4g

5
51
52
53
54
55

6
5

59
60
62
63

l

1

1
1
1
1
1
1
1
1

1

l

1
1
1
l
1
1
l
l
1

1

1
1
1
1

2 CO C V TY_TEST(2} FIXED BI {15);
OCL 1 ERTEX BAS O(P),

, 3 V , 3 zr t LO T I ,

3 P) LUAT B I ,
2
2
2

DCL 1

CL
DCL

L

2

2
2

(15) ;

B I ,

• ENTRY (p I I
1T E R ' PO I T E } EXT R A L ;

FIXED BI (l5t;
= ULL;
= ULL;
= ULL:

ULL;

I* I ITI LIZ~ TH G S ROUT NES *I

IUNIT=4C;

I L=- 5;

CALL I GSP{ I SP, 'llt;
CALL INOEV(I SPrl IT,It,l(.AFO,;

CALL I GDSCIG AFO,IGDSl);
CALL l~GDS(IGRAFD,IGOS2~;

CAlL SOATL(IG Sl,-1.0,-l.O,l. 1.0);
C LL SOATL(!G S2,-l.O,-l.O.l.O,l.);

All SAL M(IGR F);
CAll CR Tl{lGRAFO,ALEVEl);

CALL E Al Al V l, ,-14);
CALL LITS(ALEV L,3);
IPA = l; TPB = 4 ;

LL SP·C(lGSP,TPA,fPB);

I~ RfAD THE IO PORTION OF A DATA C RD *I
RID: CALL ATN(Al VEl,KEY,1,ARAY,0,-14);

If EY -,: C TH N GO TO PRCC SS;
101: CYCLE = ' 'B;

GET LIST(IO);

32

PAGE 4

Go ro

T CARD' •

o;

IN:P OC OUR OPTIONS (MAIN);

fMT L_V l N ST

64 1

65 1

67 1

6 1
7
71 i

73 1

74 l

76 1

77 1

79 i
80 1

82 1

83 1

85 1

86 1

87 1
88 1

9 l
91 l
92 1
94 1
95 1
96 1
97 l

98 1
100 1
102 1
lOB 1
109 1
114 l
1.19 i

I* NCH ACCCRDING TO THE I ST ULTI N 0 THt C RD

IF I~=O THe GO fO VIE D;

I =INDEX(!D, 'VERTEX' l;

IF I~=O THe G~ TC VERT;
I= IND X(ID,'fA-Cc•t;
If [,: THE C fO FAC;

I=I OEX(IO,•PLOT');

[f ,:Q lHEN GO TC PLT;

l=lNOEX:{ I 'I .GIN ST uc

IF £,= THEN GO TC BS;

1=[DEX(IO, •EN STRUCTURe CA A' t;
[f I ,: THEN ~o TO CSCLVE·

l=£NOEX(IO,•STOP'l;

I* COUl OT FI 0 LEGIT INSTRUCT!O ON THIS CA
THE 1EXT CA 0 *I

..

PUT EDIT(10, 'NOT A LEGAL l1 STRUCT IOf\, SKIP A>JO REA
CSKIP(2) ,COLU!M { 15' ,A,At;

GO TO RIO;
I* CR I A fACE NUDE; l N INTO F CE LIST *I

FAC: GET DATA(LABEL,NVERTl;
LLOCATE fACE;

F CE_ AME = LABEL; NU _VERT = VERT;
GET LISTC(VERTcX_l El_l!ST(l) ·c l ~ l TG VERT)
IF HEAC = tULL HE HtA C,T Il = ;
TAILQ -> tXT_F CE = Q;
NEXT~FACt = NULL;
TAILQ =
G TO RID;
I* P OCESS ATTE TION KEY *I
PROCESS.: IF KEY = 1 T EN C ll R fi'<ALEVELtKE .,z,

IF ~EY = - L THE GO TO STP;
IF KEY=2 TH .. f'i Ou;OR,OO,DTHElA,OPHl = .0 ;CYCLE='l' ;GOTO

CYCLE = 'l'B;
IF KEY = 3 THE DO; THETA= 2. ;GO TO FPROC;END;
IF KEY= 4 THE~ DO;DTHETA=-2. ;GO TO FP OC;END;
If EV = 5 THt~ 0 ;DTHETA= O.O;GO TO FPRCC;E D;

33

PAGE 5

AI :o

T if VEL s

124 l
129 l

4 1
139 1
144
149 1
l 4
1.59 1
164
1 1
17Z
17 1

19 1

191 1
192 l

194 l
199 1

200 1
2 2 1 1
2 3 l 1
204 l l

205 l

O~cDURE OPTIO s { AI , ;

lF y .::: OO;OPHl= 2. ;GO TO p

IF = 7 ;GO 10
IF = 0 TO
IF = = • 5 0 TO
I = • 25 0 10
[f = .o 0 TO .

~

I .2 ;GO TO .
:9

IF • 2 ; 0 TO
IF .o ;GO T

CYCLE THE G TO I 0;
EY -= 0;

IC

PUT IE OAT , A D REC UTE T T A S FO AT I

,Q,THE:TA,PHI ,UR,DO" THETA,IJPHI);
+ D ;

T

•

U X=COS_PHI* I _THETA·
U Y=- S I _ r;

l=-C S_PHI*C S_T ETA;

I* VIEW TA UPOATt CC~PlETE, G T N T INSTRUCTION *I
IF C Cl THE G TO PlTl;

G T I •

t~ VE I X D TA - E 0 AND c ATE DATA NODE *I

RT:GE OAT ,Y,l, E E T t •

LLO:ALLOC T TEX s T (P t ;
IF EDGES -,: GET lIST ((.ASTE 0 L=l T 0 EStl;

XN=X; =Y; l =l; u E =I AG; co = . ..
VPlCNUMBERt = P;

lf HE =NULL THE DO;

1 ;

1 [l -> EXT=

SULVE: P OCEOU (EAD_E G , FAC) ~

Sif T LEV EST

81
2

84

0
91

9
95
9
97
9

l 0
1 2

104
10 5
l 7
1 8
09
ll

112

113
14

l.l
19

1.21
12 3
124
1
12
128
129

1
1

l
1

1

l
1
l

1
1

1
1
1
l
l
1

l
1
1

1

1

l
1
1
1
1
1
t

1

13 1

l
l
l
l
l
1

1

1
l

I 0 TE ~I I G t l VEC TO F LYGO S *I
0 J K = 2 TC V RT -
I : VPl(VE TE _LABEL_LIST(J t,;

A 1 - I -> P) - P;
A = (l -> YP~ - P;

I = VPL(V TE _LAB L_L STtJAK+l));
1 = (Vl -> XP~ - XP;
2 = (V -> Pt - YP;

I* CR SS PRODUCT I
K V = K V (1 BB 2 - 1 I C AL TO P l G
E o;
ViE _TEST= V 3.;
IF _Tt:ST <
I* FACE IS 0 VI -

= XT_FAC ;
ULL THE

LP;

C _ Ff_Vl
VIE _TEST <

TO RIGHT

= . .,
LS l T IS FF

*I

IE

I* LI I ATIC 0 EDGES HIOD B T E:!R U VOLU E *I

... O;

T
= F;

= T
= ULL Hi

C L OP;
lS: RETU

. .,

= 2 TH t fF _
I H;
= 1 T E FF _VI

o;-F ·It I

p T;

= HEAO_EDGE;
[_ l = 1 r E G ro L G;

ELE _.. T OF T E GINf LIST HIC CO· TAl
I

F = -> X •

TAiLF A F =
_POINT = F;

T Fit IS;

F = AY -> YP;

ETUR TO CALLI b P CCt URE *I

TO T E

FILL THE

34

AI :P C_D c OPT s

Sf T L V ... L N T

20t
2 7

2

2
221
222

223

22
22 ')
2
227

228
229

2

2

233

2 4
235
236
2
239
24
24
243

1
1

1
1
1
1
1
l

1
1
l

l

1

1

1
1

1
1

1

1

1

1
1

1
1

1

l
1
l

l
1
1

T ll=P;
1: E T= ULL;

I* V RT X DATA I A 0 LI KED, GO TO EXT I ST UC1I I

GO T

I* s, fill PlCT U f , AND PLOT *I

PLT! GET 0 T (0-LAY~;
LTl: P= E

L :lf(X = .£Y = .&Z oo;

2 ;

V +VZ VZ);

/"r TR

u
u
u

MA =0 AG/(V *U +UVY*U V+UVZ*U Z~;

T X=

TY=
TZ=

A - Il TZ ;

P= l S P l S _THETA+TY*C _PHI-fZ SIN_P I CO
P=TX*CC _THET +TZ SI _T ETA;

F CO PL T , IF T S S OT TH LAST V TEXt
Xi 0 E I

LAB2 :IF NEXT= ULL THEN GO TO ,Et;

P= EXT;

Gc ro L P 1,

I· EINITlALIZE THE I SPLAY 8 "FER, G E TE THE ECT
ISPLAY BUFFERS I

G ll HIOE(H DE, cAD t;
F = HcAOF;
LAB : IF FLIP THE CALL PS G Sl,XI, I, F,YF~;
ELSE CALL PSGMT(l DS2,Xl,YI, F,YF);
IF XT_ OI T ,: LL THE 00;
F = E:XT_POI T;
G TO A 4;

PAGE 7

2J & Pl{

i :P CEO OPTI s (A IN~ ;

r l v l -s T

I* I T T E S NT 0 s L y, A 0 Pl T T E E

24 l lF FLIP r E
2 6 l 1 EXEC{ IGOSl~;

247 l l SET(IGCS2);

2 1
249 1 ELS
25 c (l r.s 2 l ;

251 l 1 R SEl(IGCSl,;

252 1
2 3
25 AV) ; , T 10.

259 1 TIC
26
262 1

2 3 1 c L VE:
PLOP: 0

1 l I r r =
[F L = VE T X_L BEL_ L I S T (l t ;

l L SE JJJ T(L+lt;

l 1 DC;
2

l 2 HEA E, TAIL = E;
1 2 = E;
1 2

2 Ull;
1 2 =
1 2
1 2

2 p ;
l 2
1 1 PL = I 0 (l) c. PL(JJJ) = Et\ (2)) I (VPL(ll t

l r E oo·
2 ; G rc GP ; ;

1 1
l 2 TO LII; NO;
1 1
i =
1 IF -,:

1 CSL : c
1 GO ro I

I* E STRUCTU E - FREE OLD ST RA ,E I

2 8 1 BS: IF A -NUll THE G if RID·

3 l P-=HE

1 1 L 5: :p;
l P-= T;

-> VE TE
4. 1 Ull THE TO L :

PAGE 8

ST 1T

3

3 7
3 8
3 s
3l
311
312
314
315
..

... 17

l
31
32
321

M I

LE 'EL

1
1
1
1
1
l
1
l
1

1

1
1
1
1

QC_OUR PTI s (MAIN) ;

EST

GC T LABS;

l A ,TAIL=i ULL;

D .
' ;

:: XT_FACE;
FRE -> F C . ,
If Q ..,:: Ull THe

AOQ,IAIL ::

HE OF,T lLF ::

H AD ,TAilE =
GO TO RIO;

I* - 0
srP: -c L
PUT E IT

RETU
E D

0 TC LAP5;

FD) •
TER l ATE FRO CARDS'){ (l ~ •• ;

37

BIBLIOGRAPHY

Ga11mberti, R. and Montanari, U., "An Algorithm for Hidden
Line Elimination," Communications of the ACM, April
1969, Vol. 12, Number 4, PP• 206-211.

