14 research outputs found
Metabolic labelling of DNA in cells by means of the “photoclick” reaction triggered by visible light
Two pyrene-tetrazole conjugates were synthesized as photoreactive chromophores that allow for the first time the combination of metabolic labelling of DNA in cells and subsequent bioorthogonal “photoclick” modification triggered by visible light. Two strained alkenes and three alkene-modified nucleosides were used as reactive counterparts and revealed no major differences in their “photoclick” reactivity. This is a significant advantage because it allows 5-vinyl-2′-deoxyuridine to be applied as the smallest possible alkene-modified nucleoside for metabolic labelling of DNA in cells. Both pyrene-tetrazole conjugates show fluorogenicity during the “photoclick” reactions, which is a second advantage for cellular imaging. Living HeLa cells were incubated with 5-vinyl-2′-deoxyuridine for 48 h to ensure one cell division. After fixation, the newly synthesized genomic DNA was successfully labelled by irradiation with visible light at 405 nm and 450 nm. This method is an attractive tool for the visualization of genomic DNA in cells with full spatiotemporal control by the use of visible light as a reaction trigger
"Ein wenig erforschter Kontinent"? Perspektiven einer Soziologie öffentlicher Dienstleistungen
Während in Frankreich bereits eine soziologische Kartierung des "unbekannten Kontinents" der öffentlichen Dienstleistungen erfolgte, befindet sich die Arbeitssoziologie in Deutschland diesbezüglich noch im Stadium erster Vermessungen des Terrains. Dieser Artikel möchte dazu einladen, die bewährten Konzepte und Fragestellungen der deutschsprachigen Arbeits- und Industriesoziologie auf die öffentlichen Dienstleistungen zu übertragen und hierzulande eine solche Kartierung voranzutreiben. Neben einem Überblick über die bisherigen französischen Arbeiten zu diesem Thema soll der öffentliche Dienst als besonderer Forschungsgegenstand beleuchtet werden. Herangezogen wird dazu auch Material aus einem derzeit laufenden Drei-Länder-Forschungsprojekt, welches exemplarisch zeigen soll, wie sich derzeit prominent diskutierte Fragestellungen der Arbeits- bzw. Dienstleistungssoziologie auf die Arbeit im öffentlichen Dienst anwenden lassen.Whereas in France sociologists have already mapped the previously "unknown continent" of public services, in Germany, researchers from the sociology of work are still exploring and surveying the terrain. This article argues that this kind of “mapping project” and the transferral of tried and tested concepts and approaches from German-language industrial sociology to the study of the public service sector are promising undertakings. After reviewing the status of French studies to date, the text discusses what makes the public service sector a special object of sociological research. This discussion will draw on empirical evidence from a study currently underway in Germany, Switzerland, and Austria, which aims to show how issues currently focused on in the sociology of work and service can be applied to workplaces in the public service sector
Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia.
Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5'-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy
Negative feedback regulation of MAPK signaling is an important driver of chronic lymphocytic leukemia progression
Despite available targeted treatments for the disease, drug-resistant chronic lymphocytic leukemia (CLL) poses a clinical challenge. The objective of this study is to examine whether the dual-specific phosphatases DUSP1 and DUSP6 are required to negatively regulate mitogen-activated protein kinases (MAPKs) and thus counterbalance excessive MAPK activity. We show that high expression of DUSP6 in CLL correlates with poor clinical prognosis. Importantly, genetic deletion of the inhibitory phosphatase DUSP1 or DUSP6 and blocking DUSP1/6 function using a small-molecule inhibitor reduces CLL cell survival in vitro and in vivo. Using global phospho-proteome approaches, we observe acute activation of MAPK signaling by DUSP1/6 inhibition. This promotes accumulation of mitochondrial reactive oxygen species and, thereby, DNA damage and apoptotic cell death in CLL cells. Finally, we observe that DUSP1/6 inhibition is particularly effective against treatment-resistant CLL and therefore suggest transient DUSP1/6 inhibition as a promising treatment concept to eliminate drug-resistant CLL cells
Negative feedback regulation of MAPK signaling is an important driver of chronic lymphocytic leukemia progression
Despite available targeted treatments for the disease, drug-resistant chronic lymphocytic leukemia (CLL) poses a clinical challenge. The objective of this study is to examine whether the dual-specific phosphatases DUSP1 and DUSP6 are required to negatively regulate mitogen-activated protein kinases (MAPKs) and thus counterbalance excessive MAPK activity. We show that high expression of DUSP6 in CLL correlates with poor clinical prognosis. Importantly, genetic deletion of the inhibitory phosphatase DUSP1 or DUSP6 and blocking DUSP1/6 function using a small-molecule inhibitor reduces CLL cell survival in vitro and in vivo. Using global phospho-proteome approaches, we observe acute activation of MAPK signaling by DUSP1/6 inhibition. This promotes accumulation of mitochondrial reactive oxygen species and, thereby, DNA damage and apoptotic cell death in CLL cells. Finally, we observe that DUSP1/6 inhibition is particularly effective against treatment-resistant CLL and therefore suggest transient DUSP1/6 inhibition as a promising treatment concept to eliminate drug-resistant CLL cells
Eleven strategies for making reproducible research and open science training the norm at research institutions
Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution
Eleven strategies for making reproducible research and open science training the norm at research institutions
Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution
Metabolic Labelling of DNA in Cells by Means of the “Photoclick” Reaction Triggered by Visible Light
Two pyrene-tetrazole conjugates were synthesized as photoreactive chromophores that allow for the first time the combination of metabolic labelling of DNA in cells and subsequent bioorthogonal “photoclick” modification triggered by visible light. Two strained alkenes and three alkene-modified nucleosides were used as as reactive counterparts and revealed no major differences in their “photoclick” reactivity. This is a significant advantage because it allows to apply 5-vinyl-2’-deoxyuridine as the smallest possible alkene-modified nucleoside for metabolic labelling of DNA in cells. Both pyrene-tetrazole conjugates show fluorogenicity during the “photoclick” reactions which is a second advantage for cellular imaging. Living HeLa cells were incubated with 5-vinyl-2’-deoxyuridine for 48 h to ensure one cell division. After fixation the newly synthesized genomic DNA was successfully labelled by irradiation with visible light at 405 nm and 450 nm. This method is an attractive tool for the visualization of genomic DNA in cells with full spatiotemporal control by the use of visible light as reaction trigger
Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia
Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5'-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy