136 research outputs found

    Detonation Cell Width Measurements for H2–N2O–N2–O2–CH4–NH3 Mixtures

    Get PDF
    Detonations of mixtures containing hydrogen and nitrous oxide were investigated in the GALCIT detonation tube (280 mm diameter, 7.3 m long). The facility and previous related studies are described in Akbar et al. (1997). We measured the detonation cell width, velocity and pressure for a range of equivalence ratios in three mixtures: 1) hydrogen-nitrous oxide; 2) hydrogen-nitrous oxide with 30% nitrogen dilution; 3) hydrogen-nitrous oxide with 30% nitrogen dilution further diluted 50% by air. In addition, we investigated the influence of adding 3% methane or 3% ammonia on the detonation behavior to hydrogen-nitrous oxide mixtures. Tests were conducted at initial pressures and temperatures of 70.9 kPa and 295 K, respectively. One-dimensional, steady, (ZND model) reaction zone calculations were performed with the modified Miller and Bowman hydrogen-nitrous oxide-methane-ammonia-oxygen-nitrogen mechanism (Akbar et al. 1997). These calculations were used to correlate and extrapolate the measured cell widths and also to determine the effect of initial conditions on the cell width

    Flammability limits, ignition energy, and flame speeds in H₂–CH₄–NH₃–N₂O–O₂–N₂ mixtures

    Get PDF
    Experiments on flammability limits, ignition energies, and flame speeds were carried out in a 11.25- and a 400-liter combustion vessel at initial pressures and temperatures of 100 kPa and 295 K, respectively. Flammability maps of hydrogen–nitrous oxide–nitrogen, methane–nitrous oxide–nitrogen, ammonia–nitrous oxide–nitrogen, and ammonia–nitrous oxide–air, as well as lean flammability limits of various hydrogen–methane–ammonia–nitrous oxide–oxygen–nitrogen mixtures were determined. Ignition energy bounds of methane–nitrous oxide, ammonia–nitrous oxide, and ammonia–nitrous oxide–nitrogen mixtures have been determined and the influence of small amounts of oxygen on the flammability of methane–nitrous oxide–nitrogen mixtures has been investigated. Flame speeds have been measured and laminar burning velocities have been determined for ammonia–air–nitrous oxide and various hydrogen–methane–ammonia–nitrous oxide–oxygen–nitrogen mixtures. Lower and upper flammability limits (mixing fan on, turbulent conditions) for ignition energies of 8 J are: H₂–N₂O: 4.5 ∼ 5.0% H₂(LFL), 76 ∼ 80% H₂(UFL); CH₄–N₂O: 2.5 ∼ 3.0% CH₄(LFL), 43 ∼ 50% CH₄(UFL); NH₃–N₂O: 5.0 ∼ 5.2% NH₃(LFL), 67.5 ∼ 68% NH₃(UFL). Inerting concentrations are: H₂–N₂O–N₂: 76% N₂; CH₄–N₂O–N₂: 70.5% N₂; NH₃–N₂O–N₂: 61% N₂; NH₃–N₂O–air: 85% air. Flammability limits of methane–nitrous oxide–nitrogen mixtures show no pronounced dependence on small amounts of oxygen (<5%). Generally speaking, flammable gases with large initial amounts of nitrous oxide or ammonia show a strong dependence of flammability limits on ignition energy

    Flammability limits, ignition energy, and flame speeds in H₂–CH₄–NH₃–N₂O–O₂–N₂ mixtures

    Get PDF
    Experiments on flammability limits, ignition energies, and flame speeds were carried out in a 11.25- and a 400-liter combustion vessel at initial pressures and temperatures of 100 kPa and 295 K, respectively. Flammability maps of hydrogen–nitrous oxide–nitrogen, methane–nitrous oxide–nitrogen, ammonia–nitrous oxide–nitrogen, and ammonia–nitrous oxide–air, as well as lean flammability limits of various hydrogen–methane–ammonia–nitrous oxide–oxygen–nitrogen mixtures were determined. Ignition energy bounds of methane–nitrous oxide, ammonia–nitrous oxide, and ammonia–nitrous oxide–nitrogen mixtures have been determined and the influence of small amounts of oxygen on the flammability of methane–nitrous oxide–nitrogen mixtures has been investigated. Flame speeds have been measured and laminar burning velocities have been determined for ammonia–air–nitrous oxide and various hydrogen–methane–ammonia–nitrous oxide–oxygen–nitrogen mixtures. Lower and upper flammability limits (mixing fan on, turbulent conditions) for ignition energies of 8 J are: H₂–N₂O: 4.5 ∼ 5.0% H₂(LFL), 76 ∼ 80% H₂(UFL); CH₄–N₂O: 2.5 ∼ 3.0% CH₄(LFL), 43 ∼ 50% CH₄(UFL); NH₃–N₂O: 5.0 ∼ 5.2% NH₃(LFL), 67.5 ∼ 68% NH₃(UFL). Inerting concentrations are: H₂–N₂O–N₂: 76% N₂; CH₄–N₂O–N₂: 70.5% N₂; NH₃–N₂O–N₂: 61% N₂; NH₃–N₂O–air: 85% air. Flammability limits of methane–nitrous oxide–nitrogen mixtures show no pronounced dependence on small amounts of oxygen (<5%). Generally speaking, flammable gases with large initial amounts of nitrous oxide or ammonia show a strong dependence of flammability limits on ignition energy

    Hot subdwarf binaries - Masses and nature of their heavy compact companions

    Full text link
    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 32 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models, at least 5% of the observed subdwarfs must have very massive companions: unusually heavy white dwarfs, neutron stars and, in some cases, even black holes. We present evolutionary models which show that such binaries can indeed form if the system has evolved through two common-envelope phases. This new connection between hot subdwarfs, which are numerous in the Galaxy, and massive compact objects may lead to a tremendous increase in the number of known neutron stars and black holes and shed some light on this dark population and its evolutionary link to the X-ray binary population.Comment: 8 pages, 5 figures, to appear in the Journal of Physics Conference Proceedings (JPCS) for the 16th European White Dwarf Workshop, Barcelona, Spain, June 30 - July 11, 200

    MAXI J1659-152: The shortest orbital period black-hole transient in outburst

    Get PDF
    MAXI J1659-152 is a bright X-ray transient black-hole candidate binary system discovered in September 2010. We report here on MAXI, RXTE, Swift, and XMM-Newton observations during its 2010/2011 outburst. We find that during the first one and a half week of the outburst the X-ray light curves display drops in intensity at regular intervals, which we interpret as absorption dips. About three weeks into the outbursts, again drops in intensity are seen. These dips have, however, a spectral behaviour opposite to that of the absorption dips, and are related to fast spectral state changes (hence referred to as transition dips). The absorption dips recur with a period of 2.414+/-0.005 hrs, which we interpret as the orbital period of the system. This implies that MAXI J1659-152 is the shortest period black-hole candidate binary known to date. The inclination of the accretion disk with respect to the line of sight is estimated to be 65-80 degrees. We propose the companion to the black-hole candidate to be close to an M5 dwarf star, with a mass and radius of about 0.15-0.25 M_sun and 0.2-0.25 R_sun, respectively. We derive that the companion had an initial mass of about 1.5 M_sun, which evolved to its current mass in about 5-6 billion years. The system is rather compact (orbital separation of larger than ~1.33 R_sun), and is located at a distance of 8.6+/-3.7 kpc, with a height above the Galactic plane of 2.4+/-1.0 kpc. The characteristics of short orbital period and high Galactic scale height are shared with two other transient black-hole candidate X-ray binaries, i.e., XTE J1118+480 and Swift J1735.5-0127. We suggest that all three are kicked out of the Galactic plane into the halo, rather than being formed in a globular cluster.Comment: 20 pages, 14 figures, accepted for publication in A&

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    • …
    corecore