9 research outputs found

    Peatland Volume Mapping Over Resistive Substrates With Airborne Electromagnetic Technology

    Get PDF
    open6siDespite the importance of peatlands as carbon reservoirs, a reliable methodology for the detection of peat volumes at regional scale is still missing. In this study we explore for the first time the use of airborne electromagnetic (AEM) to detect and quantify peat thickness and extension of two bogs located in Norway, where peat lays over resistive bedrock. Our results show that when calibrated using a small amount of field measurements, AEM can successfully detect peat volume even in less ideal conditions, that is, relatively resistive peat over resistive substrata. We expect the performance of AEM to increase significantly in presence of a conductive substratum without need of calibration with field data. The organic carbon content retrieved from field surveys and laboratory analyses combined with the 3-D model of the peat extracted from AEM allowed us to quantify the total organic carbon of the selected bogs, hence assessing the carbon pool.openSilvestri S.; Christensen C.W.; Lysdahl A.O.K.; Anschutz H.; Pfaffhuber A.A.; Viezzoli A.Silvestri S.; Christensen C.W.; Lysdahl A.O.K.; Anschutz H.; Pfaffhuber A.A.; Viezzoli A

    In situ detection of sensitive clays – Part II: Results

    Get PDF
    Sensitive and quick clays are typically found in Norway, Sweden and Canada, and are characterised by a remoulded undrained shear strength considerably lower than the undisturbed shear strength. In geotechnical engineering, the presence of sensitive clays poses a major challenge. The landslides at Rissa in 1978, and more recently at the Skjeggestad bridge in Norway, are devastating reminders of the potential threats related to such soils. In a construction project it is hence important to 1) determine if there is sensitive clay present and 2) clarify the extent of the quick clay deposit. This is currently done based on interpretation of soundings and to some extent geophysical methods such as electrical resistivity measurements. However, for verification of quick clay, sampling and laboratory testing must be performed. Here, a set of updated and new guidelines for classification of sensitive clays from in-situ measurements are presented. The aim is to provide the geotechnical engineer with a practical classification tools where all available information is utilized and combined efficiently. The classification tools are based on results from methods such as conventional soundings, CPTU with measurement of total force, electrical field vane testing in combination with geophysical methods such as R-CPTU, 2D resistivity profiles (ERT) and airborne electromagnetic measurements (AEM). The methods, and how they are utilized in investigation strategies for detection of quick and sensitive clays, have been described in another paper to this conference. An extensive database of Norwegian test sites forms the basis for the work. The results from this study show that the above mentioned site investigation methods holds information that complements each other, to form a solid basis for detection of sensitive clays. In turn, this opens for more efficient site investigations where all available data are interpreted in a systematic manner to produce a reliable map of sensitive clay deposits.publishedVersio

    Helicopter-borne sea ice thickness measurements in the Storfjord, Spitsbergen from flight HEM_STJ06_01

    No full text
    Results from electromagnetic induction surveys of sea-ice thickness in Storfjorden, Svalbard, reveal large interannual ice-thickness variations in a region which is typically characterized by a reoccurring polynya. The surveys were performed in March 2003, May 2006 and March 2007 with helicopter- and ship-based sensors. The thickness distributions are influenced by sea-ice and atmospheric boundary conditions 2 months prior to the surveys, which are assessed with synthetic aperture radar (SAR) images, regional QuikSCAT backscatter maps and wind information from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Locally formed thin ice from the Storfjorden polynya was frequently observed in 2003 and 2007 (mean thickness 0.55 and 0.37 m, respectively) because these years were characterized by prevailing northeasterly winds. In contrast, the entire fjord was covered with thick external sea ice in 2006 (mean thickness 2.21 m), when ice from the Barents Sea was driven into the fjord by predominantly southerly winds. The modal thickness of this external ice in 2006 increased from 1.2 m in the northern fjord to 2.4 m in the southern fjord, indicating stronger deformation in the southern part. This dynamically thickened ice was even thicker than multi-year ice advected from the central Arctic Ocean in 2003 (mean thickness 1.83 m). The thermodynamic ice thickness of fast ice as boundary condition is investigated with a one-dimensional sea-ice growth model (1DICE) forced with meteorological data from the weather station at the island of Hopen, southeast of Storfjorden. The model results are in good agreement with the modal thicknesses of fast-ice measurements in all years

    Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ã…lesund

    Get PDF
    The Zeppelin Observatory (78.90°;N, 11.88°;E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions

    Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ã…lesund

    No full text
    The Zeppelin Observatory (78.90°;N, 11.88°;E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions

    Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ã…lesund

    No full text
    The Zeppelin Observatory (78.90°;N, 11.88°;E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions

    Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ã…lesund

    Get PDF
    The Zeppelin Observatory (78.90°;N, 11.88°;E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions
    corecore