65 research outputs found

    Orange-Red to Yellowish Brown Cordierite from Madagascar

    Get PDF
    Gem-quality cordierite is typically seen as blue material (iolite), showing strong pleochroism in yellow, light blue and dark violet-blue. However, in late 2014 one of the authors (FP) learned about a new occurrence of a much different cordierite, which typically ranged from dark orange-red to yellowish brown. The material is recovered by local miners from weathered residual deposits in southern Madagascar, probably in the Gogogogo area, north of Ampanihy in Tuléar Province. One of the authors (FP) obtained about 120 kg of rough material of mixed quality from the miners over a period of a few months, from which only a few kilograms were suitable for cutting cabochons and faceted stones

    Blue-growth zones caused by Fe2+ in tourmaline crystals from the San Piero in Campo gem-bearing pegmatites, Elba Island, Italy

    Get PDF
    Two tourmaline crystals with a blue growth zone at the analogous pole, respectively from the San Silvestro and the Fucili pegmatites, located in the San Piero in Campo village, Elba Island (Tyrrhenian Sea, Italy), have been described for the first time using compositional and spectroscopic data to define their crystal-chemical aspects and the causes of the colour. Compositional data obtained by electron microprobe analysis indicate that both tourmalines belong to the elbaite–fluor-elbaite series. The upper part of each crystal is characterised by an increased amount of Fe (FeO up to ~1 wt.%) and a Ti content below the detection limit. Optical absorption spectra recorded on the blue zone of both samples show absorption bands caused by spin-allowed d-d transitions in [6]-coordinated Fe2+, and no intervalence charge transfer Fe2+-Ti interactions, indicating that Fe2+ is the only chromophore. Mössbauer analysis of the blue zone of the Fucili sample confirmed the Fe2+ oxidation state, implying that the redox conditions in the crystallisation environment were relatively reducing. The presence of colour changes at the analogous termination during tourmaline crystal growth suggests a change in the composition of the crystallisation environment, probably associated with a partial opening of the system

    Orange-Red to Yellowish Brown Cordierite from Madagascar

    Get PDF
    Gem-quality cordierite is typically seen as blue material (iolite), showing strong pleochroism in yellow, light blue and dark violet-blue. However, in late 2014 one of the authors (FP) learned about a new occurrence of a much different cordierite, which typically ranged from dark orange-red to yellowish brown. The material is recovered by local miners from weathered residual deposits in southern Madagascar, probably in the Gogogogo area, north of Ampanihy in Tuléar Province. One of the authors (FP) obtained about 120 kg of rough material of mixed quality from the miners over a period of a few months, from which only a few kilograms were suitable for cutting cabochons and faceted stones

    GigaRad total ionizing dose and post-irradiation effects on 28 nm bulk MOSFETs

    Get PDF
    The DC performance of both n- and pMOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the Large Hadron Collider at CERN. The total ionizing dose effects show limited influence in the drive current of all the tested nMOSFETs. Nonetheless, the leakage current increases significantly, affecting the normal device operation of the nMOSFETs. These phenomena can be linked to the charge trapping in the oxides and at the Si/oxide interfaces, related to both the gate oxide and the shallow trench isolation oxide. In addition, it has been observed that the radiation-induced effects are partly recovered by the long-term post-irradiation annealing. To quantify the total ionizing dose effects on DC characteristics, the threshold voltage, subthreshold swing, and drain induced barrier lowering have also been extracted for nMOSFETs

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    B23 Cartridge Prototype Manufacturing and Integration Report

    Get PDF
    This document reports on the manufacturing and assembly of the B23 Prototype cartridge to perform cryogenic noise tests @ INAF/IASF-Bologna

    Limitations of Fe^(2+) and Mn^(2+) site occupancy in tourmaline: Evidence from Fe^(2+)- and Mn^(2+)-rich tourmaline

    Get PDF
    Fe^(2+)- and Mn^(2+)-rich tourmalines were used to test whether Fe^(2+) and Mn^(2+) substitute on the Z site of tourmaline to a detectable degree. Fe-rich tourmaline from a pegmatite from Lower Austria was characterized by crystal-structure refinement, chemical analyses, and Mössbauer and optical spectroscopy. The sample has large amounts of Fe^(2+) (~2.3 apfu), and substantial amounts of Fe^(3+) (~1.0 apfu). On basis of the collected data, the structural refinement and the spectroscopic data, an initial formula was determined by assigning the entire amount of Fe^(3+) (no delocalized electrons) and Ti^(4+) to the Z site and the amount of Fe^(2+) and Fe^(3+) from delocalized electrons to the Y-Z ED doublet (delocalized electrons between Y-Z and Y-Y): X(Na_(0.9)Ca_(0.1)) ^Y(Fe^(2+)_(2.0)Al_(0.4)Mn^(2+)_(0.3)Fe^(3+)_(0.2)) ^Z(Al_(4.8)Fe^(3+)_(0.8)Fe^(2+)_(0.2)Ti^(4+)_(0.1)) ^T(Si_(5.9)Al_(0.1))O_(18) (BO_3)_3^V(OH)_3 ^W[O_(0.5)F_(0.3)(OH)_(0.2)] with α = 16.039(1) and c = 7.254(1) Å. This formula is consistent with lack of Fe^(2+) at the Z site, apart from that occupancy connected with delocalization of a hopping electron. The formula was further modified by considering two ED doublets to yield: ^X(Na_(0.9)Ca_(0.1)) ^Y(Fe^(2+)_(1.8)Al_(0.5)Mn^(2+)_(0.3)Fe^(3+)_(0.3)) ^Z(Al_(4.8)Fe^(3+)_(0.7)Fe^(2+)_(0.4)Ti^(4+)_(0.1)) ^T(Si_(5.9_Al_(0.1))O_(18) (BO_3)_3 ^V(OH)_3 ^W[O_(0.5)F_(0.3)(OH)_(0.2)]. This formula requires some Fe^(2+) (~0.3 apfu) at the Z site, apart from that connected with delocalization of a hopping electron. Optical spectra were recorded from this sample as well as from two other Fe^(2+)-rich tourmalines to determine if there is any evidence for Fe^(2+) at Y and Z sites. If Fe^(2+) were to occupy two different 6-coordinated sites in significant amounts and if these polyhedra have different geometries or metal-oxygen distances, bands from each site should be observed. However, even in high-quality spectra we see no evidence for such a doubling of the bands. We conclude that there is no ultimate proof for Fe^(2+) at the Z site, apart from that occupancy connected with delocalization of hopping electrons involving Fe cations at the Y and Z sites. A very Mn-rich tourmaline from a pegmatite on Elba Island, Italy, was characterized by crystal-structure determination, chemical analyses, and optical spectroscopy. The optimized structural formula is ^X(Na_(0.6)□_(0.4)) ^Y(Mn^(2+)_(1.3)Al_(1.2)Li_(0.5)) ^ZAl_6 ^TSi_6O_(18) (BO_3)_3 ^V(OH)_3 ^W[F_(0.5)O_(0.5)], with α = 15.951(2) and c = 7.138(1) Å. Within a 3σ error there is no evidence for Mn occupancy at the Z site by refinement of Al ↔ Mn, and, thus, no final proof for Mn^(2+) at the Z site, either. Oxidation of these tourmalines at 700–750 °C and 1 bar for 10–72 h converted Fe^(2+) to Fe^(3+) and Mn^(2+) to Mn^(3+) with concomitant exchange with Al of the Z site. The refined ^ZFe content in the Fe-rich tourmaline increased by ~40% relative to its initial occupancy. The refined YFe content was smaller and the distance was significantly reduced relative to the unoxidized sample. A similar effect was observed for the oxidized Mn^(2+)-rich tourmaline. Simultaneously, H and F were expelled from both samples as indicated by structural refinements, and H expulsion was indicated by infrared spectroscopy. The final species after oxidizing the Fe^(2+)-rich tourmaline is buergerite. Its color had changed from blackish to brown-red. After oxidizing the Mn^(2+)-rich tourmaline, the previously dark yellow sample was very dark brown-red, as expected for the oxidation of Mn^(2+) to Mn^(3+). The unit-cell parameter α decreased during oxidation whereas the c parameter showed a slight increase

    Detection chain and electronic readout of the QUBIC instrument

    Get PDF
    The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10⁻Âč⁶ W/√Hz

    Detection chain and electronic readout of the QUBIC instrument

    Get PDF
    The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10⁻Âč⁶ W/√Hz
    • 

    corecore