851 research outputs found

    Coefficient of thermal expansion of nanostructured tungsten based coatings assessed by thermally induced substrate curvature method

    Full text link
    The in plane coefficient of thermal expansion (CTE) and the residual stress of nanostructured W based coatings are extensively investigated. The CTE and the residual stresses are derived by means of an optimized ad-hoc developed experimental setup based on the detection of the substrate curvature by a laser system. The nanostructured coatings are deposited by Pulsed Laser Deposition. Thanks to its versatility, nanocrystalline W metallic coatings, ultra-nano-crystalline pure W and W-Tantalum coatings and amorphous-like W coatings are obtained. The correlation between the nanostructure, the residual stress and the CTE of the coatings are thus elucidated. We find that all the samples show a compressive state of stress that decreases as the structure goes from columnar nanocrystalline to amorphous-like. The CTE of all the coatings is higher than the one of the corresponding bulk W form. In particular, as the grain size shrinks, the CTE increases from 5.1 10−6^{-6} K−1^{-1} for nanocrystalline W to 6.6 10−6^{-6} K−1^{-1} in the ultra-nano-crystalline region. When dealing with amorphous W, the further increase of the CTE is attributed to a higher porosity degree of the samples. The CTE trend is also investigated as function of materials stiffness. In this case, as W coatings become softer, the easier they thermally expand.Comment: The research leading to these results has also received funding from the European Research Council Consolidator Grant ENSURE (ERC-2014-CoG No. 647554

    Spin and energy relaxation in germanium studied by spin-polarized direct-gap photoluminescence

    Full text link
    Spin orientation of photoexcited carriers and their energy relaxation is investigated in bulk Ge by studying spin-polarized recombination across the direct band gap. The control over parameters such as doping and lattice temperature is shown to yield high polarization degree, namely larger than 40%, as well as a fine-tuning of the angular momentum of the emitted light with a complete reversal between right- and left-handed circular polarization. By combining the measurement of the optical polarization state of band-edge luminescence and Monte Carlo simulations of carrier dynamics, we show that these very rich and complex phenomena are the result of the electron thermalization and cooling in the multi-valley conduction band of Ge. The circular polarization of the direct-gap radiative recombination is indeed affected by energy relaxation of hot electrons via the X valleys and the Coulomb interaction with extrinsic carriers. Finally, thermal activation of unpolarized L valley electrons accounts for the luminescence depolarization in the high temperature regime

    Frontal and subcortical contribution to visual hallucinations in dementia with Lewy bodies and Parkinson’s disease

    Get PDF
    Objectives. Visual hallucinations (VH) are common in Lewy body disease (LBD), and have been associated with cognitive and structural brain alterations. Evidence so far concerns mainly Parkinson’s disease (PD), but little is known about symptom-specific pathophysiological mechanisms across the LBD spectrum, especially related to the presence of dementia. The aim of the present pilot study was to investigate the neuroanatomical, and neuropsychological characteristics related to VH in two forms of LBD, namely dementia with Lewy bodies (DLB) and PD without dementia. Methods. Whole brain voxel-based morphometry (VBM) analyses on 3D MRI acquired structural brain scans, and neuropsychological testing were performed on 28 clinically diagnosed DLB (11 with VH, 17 NVH), and 24 PD (9 with VH, and 15 NVH) patients. In order to assess differences in grey matter (GM) regional volumes, and cognitive performance, hallucinating patients for each group were compared with corresponding non-hallucinating ones. Results. DLB patients with VH presented significantly worse visual attention deficits compared to those without, which persisted even when controlling for visual perception. Whole brain VBM analysis revealed decreased GM volume in DLB with VH in the right superior and medial frontal gyri, putamen, caudate nucleus and insula. Subcortical regional volumes were also significantly associated with visual attention performance. Hallucinating PD patients, instead, presented more severe executive dysfunction, but VBM showed no volumetric differences between the two PD subgroups. Post hoc region of interest analyses revealed striatal GM loss in PD with VH. Conclusion. Frontal and striatal GM atrophy may contribute to the emergence of VH in DLB, which may be fostered by the more severe attention deficits. Striatal GM loss and executive dysfunction, instead, appeared to underlie VH in PD without dementia

    Structural and Functional Neuroimaging of Visual Hallucinations in Lewy Body Disease: A Systematic Literature Review.

    Get PDF
    Patients with Lewy body disease (LBD) frequently experience visual hallucinations (VH), well-formed images perceived without the presence of real stimuli. The structural and functional brain mechanisms underlying VH in LBD are still unclear. The present review summarises the current literature on the neural correlates of VH in LBD, namely Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Following a systematic literature search, 56 neuroimaging studies of VH in PD and DLB were critically reviewed and evaluated for quality assessment. The main structural neuroimaging results on VH in LBD revealed grey matter loss in frontal areas in patients with dementia, and parietal and occipito-temporal regions in PD without dementia. Parietal and temporal hypometabolism was also reported in hallucinating PD patients. Disrupted functional connectivity was detected especially in the default mode network and fronto-parietal regions. However, evidence on structural and functional connectivity is still limited and requires further investigation. The current literature is in line with integrative models of VH suggesting a role of attention and perception deficits in the development of VH. However, despite the close relationship between VH and cognitive impairment, its associations with brain structure and function have been explored only by a limited number of studies

    Gallstone ileus treated with non-surgical conservative methods: a case report

    Get PDF
    INTRODUCTION: The preoperative diagnosis of gallstone ileus is challenging due to the variability of its presentation, often resulting in late diagnosis. Controversy remains regarding the management of gallstone ileus; surgery is the standard treatment, but also less invasive approaches have proven to be successful. We present an unusual case of gallstone ileus and its conservative treatment. CASE PRESENTATION: We describe the case of a 49-year-old Caucasian woman with a bowel sub-occlusion, treated conservatively. The imaging technique (plain abdominal X-ray and computed tomography scan) led to a diagnosis of gallstones ileus. A surgical intervention was not performed. Instead, she underwent extracorporeal shock-wave lithotripsy to fragment the stones, mechanical intestinal dilatation for ileocolic stenosis and endoscopic removal of the gallstone. The presence of an apricot shell contributed to the bowel occlusion and was removed. The intervention was successful and without complications. CONCLUSIONS: Given the variability of the gallstone ileus presentation, surgery could not be the only treatment for our patient. In our case report, we show that colonoscopy could be a non-invasive approach that allows for diagnosis and treatment at the same time. The available data do not show a higher rate of recurrent biliary disease in cases where this method has been used, therefore in select patients, a conservative treatment could be an effective solution

    Application of the socio-ecological system framework to forest fire risk management: A systematic literature review

    Get PDF
    Although increasing concern about climate change has raised awareness of the fundamental role of forest ecosystems, forests are threatened by human-induced impacts worldwide. Among them, wildfire risk is clearly the result of the interaction between human activities, ecological domains, and climate. However, a clear understanding of these interactions is still needed both at the global and local levels. Numerous studies have proven the validity of the socioecological system (SES) approach in addressing this kind of interdisciplinary issue. Therefore, a systematic review of the existing literature on the application of SES frameworks to forest ecosystems is carried out, with a specific focus on wildfire risk management. The results demonstrate the existence of different methodological approaches that can be grouped into seven main categories, which range from qualitative analysis to quantitative spatially explicit investigations. The strengths and limitations of the approaches are discussed, with a specific reference to the geographical setting of the works. The research suggests the importance of local community involvement and local knowledge consideration in wildfire risk management. This review provides a starting point for future research on forest SES and a supporting tool for the development of a sustainable wildfire risk adaptation and mitigation strategy

    Analysis of navigation pattern in the sport of rowing

    Get PDF
    The effect of weather and environmental conditions on sports has been extensively studied over the last few years (Pezzoli et al., 2010). Based upon the studies of Lobozewicz (1981) and of Kay and Vamplew (2002), Pezzoli and Cristofori (2008) have studied the impact of some specific environmental parameters over different sports using a particular impact index divided into five classes. This analysis clearly shows that most of the outdoor sport activities are strongly influenced by the variation of meteorological parameters. However the impact of meteorological conditions on outdoor sport activities has not yet been extensively studied. The aim of this research is to show that an accurate assessment of wind and wave parameters enables decisive improvements in both training and race strategy planning. Furthermore this analysis provide a very innovative working method for the applied sport research. The work has been based on in-situ measurements of both environmental and performance parameters (wind direction, wind velocity, boat speed and stroke rate) made over different classes and in different race conditions during the 2009 FISA World Championship (Poznan, Poland). In particular a detailed environmental analysis was performed by measuring the wind direction, the wind speed and by evaluating the significant wave height and the wave peak period for each class during the semi-final phase and the final phase. It should be noted that, since wind is a key parameter affecting not only the boat speed but also the race strategy, the assessment of the wind velocity and of the wind direction has been made in connection with the boat movement. The comparison between coupled wind-wave data, boat speed and stroke rate evidently demonstrates that only crews that managed the adaption to changing in the environmental conditions from semi-final to final phase of the race, were able to get better results. References Kay, J., & Vamplew, W. (2002) Weather beaten: sport in the British climate. London: Ed. Mainstream Publishing. Lobozewicz, T. (1981) Meteorology in sport. Frankfurt: Ed. Sportverlag. Pezzoli, A,, Moncalero, M., Boscolo, A., Cristofori, E., Giacometto, F., Gastaldi, S., & Vercelli, G. (2010) The meteo-hydrological analysis and the sport performance: which are the connections? The case of the XXI Winter Olympic Games, Vancouver 2010, Journal of Sports Medicine and Physical Fitness, 50: 19-20. Pezzoli, A., & Cristofori, E. (2008) Analisi, previsioni e misure meteorologiche applicate agli sport equestri, in: 10th Congress "New findings in equine practices, Druento: Centro Internazionale del Cavallo Ed., p.38-4

    Giant g factor tuning of long-lived electron spins in Ge

    Get PDF
    Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the highly desirable but contrasting requirements of spin robustness to relaxation mechanisms and sizeable coupling between spin and orbital motion of charge carriers. Here we focus on Ge, which, by matching those criteria, is rapidly emerging as a prominent candidate for shuttling spin quantum bits in the mature framework of Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome such fundamental limitations by investigating a two dimensional electron gas (2DEG) confined in quantum wells of pure Ge grown on SiGe-buffered Si substrates. These epitaxial systems demonstrate exceptionally long spin relaxation and coherence times, eventually unveiling the potential of Ge in bridging the gap between spintronic concepts and semiconductor device physics. In particular, by tuning spin-orbit interaction via quantum confinement we demonstrate that the electron Land\'e g factor and its anisotropy can be engineered in our scalable and CMOS-compatible architectures over a range previously inaccessible for Si spintronics

    Spin-dependent direct gap emission in tensile-strained Ge films on Si substrates

    Full text link
    The circular polarization of direct gap emission of Ge is studied in optically-excited tensile-strained Ge-on-Si heterostructures as a function of doping and temperature. Owing to the spin-dependent optical selection rules, the radiative recombinations involving strain-split light (cG-LH) and heavy hole (cG-HH) bands are unambiguously resolved. The fundamental cG-LH transition is found to have a low temperature circular polarization degree of about 85% despite an off-resonance excitation of more than 300 meV. By photoluminescence (PL) measurements and tight binding calculations we show that this exceptionally high value is due to the peculiar energy dependence of the optically-induced electron spin population. Finally, our observation of the direct gap doublet clarifies that the light hole contribution, previously considered to be negligible, can dominate the room temperature PL even at low tensile strain values of about 0.2%
    • 

    corecore