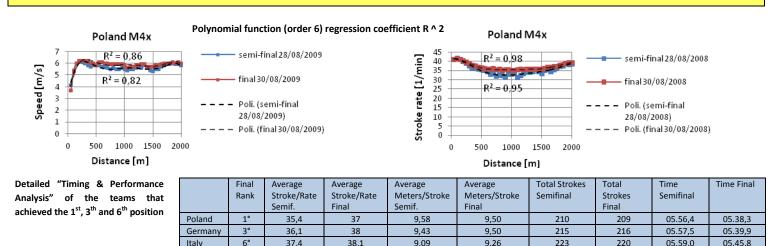
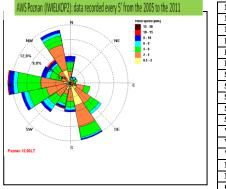


World Congress of Performance Analysis of Sport IX, 25-28 July 2012, University of Worcester ENGLAND

ANALYSIS OF NAVIGATION PATTERN IN THE SPORT OF ROWING

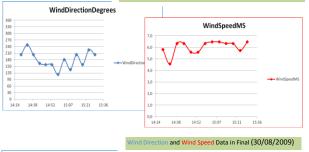

A. Pezzoli, A. Baldacci, A. Cama, M. Faina, D. Dalla Vedova, M. Besi, G. Vercelli, A. Boscolo, M. Dalessandro, E. Cristofori

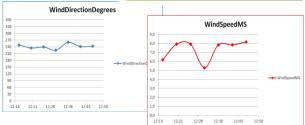

GOAL: Evaluation of the wind-wave interaction in enclosed basin and analysis of the impact of the environmental conditions on the sport of rowing

MATERIALS AND METHODS: analysis of meteorological data for the site of Poznan (PL) and "Timing Analysis" of the M4x regatta (data analysis of "speed/stroke rate" assessed every 50m)

- Evaluation of the wind speed and direction recorded data and elaboration of wind roses trough the Windrose PRO (Enviroware) software
- Evaluation of the wave through a computer code developed in MATLAB using the "parametric equation"
- Development of a "Timing & Performance Analysis" of the semi-final and final races with the aid of "tracking's" techniques for data analysis

WHY POZNAN?: in the Malta's basin in Poznan, you can do the analysis of the race with a favorable wind ("tailwind") and with the wind against it ("headwind")




W 10 11 (1
Vind Speed [m/s]
Calm
0.5;2.0]
2.0;4.0]
4.0;6.0]
6.0;8.0]
8.0;10.0]
10.0;15.0]
15.0
1510
Wind speed range:
, ,
Average wind spe
0

nd Speed Data in Semifinal (28/08/2009)

m/s]	Percent	100		Contraction of the	-	and the second s		-	-
	0.790			and the second		Renter			
	16.911	«He		«Tailwind	0 [WSW-WNW]		· and in	3	
	38.557				500 m	0.10 + 0.12	Contraction of the second	Core of	
	28.298		[m] 0.08 + 0.12				and the second		
	8.005				1000 m	0.15 + 0.17	SA -		
	6.652	$H_{s}[m]$		$H_s[m]$	\vdash			S. A.	1
	0.789				1500 m	0.19 + 0.21		A Station	
	0.000				2000 m	0.22 + 0.25		1000	
e: D	2 ; 7] m/s							-	-
5° . [•	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				500 m	1.6 + 2.0	- ALL		
							Par	anski	111
peed	d: 4-5m/s	T (4)	1.5 + 2.0	TIM	1000 m	2.0 + 2.5	Fully Con	11 TATES	
		T _p [s]	1.5 * 2.0	T _p [s]	1500 m	2.2 + 2.8	A com s		Goog
					2000 m	2.5 + 3.2			

brought to you by 🗓 CORE

CONCLUSION 1: Our results confirmed the research of Muhlbauer et al. (2010). The graphs of *"speed"* and *"stroke rate"* show that, irrespective of the race type, boat rank or boat type, the navigation's *"pattern"* has always the same typology. In fact we had a faster start in the first quarter (500m) followed by a decreasing of the boat speed in the second and/or third quarter (s) and, finally, a new increasing of the boat speed in the last quarter (2000m)

CONCLUSION 2: The R^2 coefficient was always higher in the final race than in the semi-final. This analysis shows how the curves of *"speed"* and *"stroke rate"* are more regular in the final compared to the semifinal by making us to suppose that the navigation's "pattern" is more regular in tailwind conditions than in headwind conditions

CONCLUSION 3: Between the semifinal and final:

- the Poland did 8cm for stroke in less with a decreasing of 1 stroke
- the Germany did 7cm for stroke in more with an increasing of 1 stroke
- the **Italy** did 17cm for stroke in more with a decreasing of 3 strokes

CONCLUSION 4: regarding the *environmental* changes between the semifinal and the final and in consideration of the *"Timing & Performance Analysis"*, we can said that:

- the **Poland has** <u>adapted better</u> to the new conditions, perhaps aided by a better understanding of the *home's* field and sparing himself in the semi-final
- the Germany is in a "<u>middle way</u>" regarding the adaptation
- the Italy has not adapted to the new conditions