843 research outputs found

    Genome Editing and Inherited Cardiac Arrhythmias.

    Get PDF
    Inherited arrhythmic disorders are a group of heterogeneous diseases predisposing to life-threatening arrhythmias and sudden cardiac death. Their diagnosis is not always simple due to incomplete penetrance and genetic heterogeneity. Furthermore, the available treatments are usually invasive and merely preventive. Genome editing and especially CRISPR/Cas9 technologies have the potential to correct the genetic arrhythmogenic substrate, thereby offering a cure for these fatal diseases. To date, genome editing has allowed reproducing cardiac arrhythmias in vitro, providing a robust platform for variant pathogenicity, mechanistic, and drug-testing studies. However, in vivo approaches still need profound research regarding safety, specificity, and efficiency of the methods.S

    Murine models of ARVC: what have we learned and where do we go? Insight for therapeutics.

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetically-determined cardiac heart muscle disorder characterized by fibro-fatty replacement of the myocardium that causes heart failure and sudden cardiac death (SCD), predominantly in young males. The disease is often caused by mutations in genes encoding proteins of the desmosomal (cell-to-cell adhesion) complex, with a significant minority caused by mutations in non-desmosomal proteins. Existing treatment options are based on SCD prevention with the implantable cardioverter defibrillator and anti-heart failure medication. Heart transplantation may also be required and there is currently no cure. Several transgenic animal models have been developed to characterize the disease, assess its progression and determine the influence of potential environmental factors. Transgenic models are also very valuable for translational therapeutic approaches, to screen new treatment options that prevent and/or regress the disease. Here we review the available ARVC animal models reported to date, highlighting the most important pathophysiological findings and discussing the effect of treatments tested so far in this setting. We also describe gaps in current disease knowledge with the goal of facilitating research and improving patient outcomes.pre-print396 K

    Early preventive treatment with Enalapril improves cardiac function and delays mortality in mice with arrhythmogenic right ventricular cardiomyopathy type 5.

    Get PDF
    Background: Arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) is an inherited cardiac disease with complete penetrance and an aggressive clinical course caused by mutations in TMEM43 (transmembrane protein 43). There is no cure for ARVC5 and palliative treatment is started once the phenotype is present. A transgenic mouse model of ARVC5 expressing human TMEM43-S358L (TMEM43mut) recapitulates the human disease, enabling the exploration of preventive treatments. The aim of this study is to determine whether preventive treatment with heart failure drugs (β-blockers, ACE [angiotensin-converting enzyme] inhibitors, mineralocorticoid-receptor antagonists) improves the disease course of ARVC5 in TMEM43mut mice. Methods: TMEM43mut male/female mice were treated with metoprolol (β-blockers), enalapril (ACE inhibitor), spironolactone (mineralocorticoid-receptor antagonist), ACE inhibitor + mineralocorticoid-receptor antagonist, ACE inhibitor + mineralocorticoid-receptor antagonist + β-blockers or left untreated. Drugs were initiated at 3 weeks of age, before ARVC5 phenotype, and serial ECG and echocardiograms were performed. Results: TMEM43mut mice treated with enalapril showed a significantly increased median survival compared with untreated mice (26 versus 21 weeks; P=0.003). Enalapril-treated mice also exhibited increased left ventricular ejection fraction at 4 months compared with controls (37.0% versus 24.9%; P=0.004), shorter QRS duration and reduced left ventricle fibrosis. Combined regimens including enalapril also showed positive effects. Metoprolol decreased QRS voltage prematurely and resulted in a nonsignificant decrease in left ventricular ejection fraction compared with untreated TMEM43mut mice. Conclusions: Preventive enalapril-based regimens reduced fibrosis, improved ECG, echocardiographic parameters and survival of ARVC5 mice. Early metoprolol did not show positive effects and caused premature ECG abnormalities. Our findings pave the way to consider prophylactic enalapril in asymptomatic ARVC5 genetic carriers.pre-print326 K

    Specimen sharing for epidemic preparedness:Building a virtual biorepository system from local governance to global partnerships

    Get PDF
    We present a framework for a federated, virtual biorepository system (VBS) with locally collected and managed specimens, as a 'global public good' model based on principles of equitable access and benefit sharing. The VBS is intended to facilitate timely access to biological specimens and associated data for outbreak-prone infectious diseases to accelerate the development and evaluation of diagnostics, assess vaccine efficacy, and to support surveillance and research needs. The VBS is aimed to be aligned with the WHO BioHub and other specimen sharing efforts as a force multiplier to meet the needs of strengthening global tools for countering epidemics. The purpose of our initial research is to lay the basis of the collaboration, management and principles of equitable sharing focused on low- and middle-income country partners. Here we report on surveys and interviews undertaken with biorepository-interested parties to better understand needs and barriers for specimen access and share examples from the ZIKAlliance partnership on the governance and operations of locally organized biorepositories.</p

    Usefulness of genetic testing in hypertrophic cardiomyopathy. An analysis using real-world data.

    Get PDF
    Aims: This study sought to determine the usefulness of genetic testing to predict evolution in hypertrophic cardiomyopathy (HCM) and to assess the role of genetic testing in clinical practice. Methods and Results: Genetic results of 100 HCM patients tested for mutations in ≥10 HCM-causing genes were evaluated. Patients were classified as with poor (Group A) or favourable(Group B) clinical course. Forty-five pathogenic mutations (PM) were identified in 28 patients (56%) from Group A and in 23 (46%) from Group B (p=0.317). Only 40 patients (40%) exhibited PM that had been previously reported and only 15 (15%) had PM reported in ≥10 individuals. PM associated with poor prognosis were identified in just 5 patients from Group A (10%). Conclusion: Genetic findings are not useful to predict prognosis in most HCM patients. By contrast, real-world data reinforce the usefulness of genetic testing to provide genetic counselling and to enable cascade genetic screening.pre-print298 K

    Lung ultrasound as a translational approach for non-invasive assessment of heart failure with reduced or preserved ejection fraction in mice

    Get PDF
    Aims: Heart failure (HF) has become an epidemic and constitutes a major medical, social, and economic problem worldwide. Despite advances in medical treatment, HF prognosis remains poor. The development of efficient therapies is hampered by the lack of appropriate animal models in which HF can be reliably determined, particularly in mice. The development of HF in mice is often assumed based on the presence of cardiac dysfunction, but HF itself is seldom proved. Lung ultrasound (LUS) has become a helpful tool for lung congestion assessment in patients at all stages of HF. We aimed to apply this non-invasive imaging tool to evaluate HF in mouse models of both systolic and diastolic dysfunction. Methods and results: We used LUS to study HF in a mouse model of systolic dysfunction, dilated cardiomyopathy, and in a mouse model of diastolic dysfunction, diabetic cardiomyopathy. LUS proved to be a reliable and reproducible tool to detect pulmonary congestion in mice. The combination of LUS and echocardiography allowed discriminating those mice that develop HF from those that do not, even in the presence of evident cardiac dysfunction. The study showed that LUS can be used to identify the onset of HF decompensation and to evaluate the efficacy of therapies for this syndrome. Conclusions: This novel approach in mouse models of cardiac disease enables for the first time to adequately diagnose HF non-invasively in mice with preserved or reduced ejection fraction, and will pave the way to a better understanding of HF and to the development of new therapeutic approaches.This study was supported by grants from the Spanish Ministerio de Economia y Competitividad (SAF2015-65722-R), Comunidad Autonoma de Madrid (2010-BMD2321, FIBROTEAM Consortium), European Union's FP7 (CardioNeT-ITN-289600, CardioNext-ITN-608027) and the Spanish Instituto de Salud Carlos III (CPII14/00027 to E.L-P, RD12/0042/0054 to B.I. and RD12/0042/066 to P.G.-P. and E.L-P). This work was also supported by the Plan Estatal de I+D+I 2013-2016 - European Regional Development Fund (FEDER) "A way of making Europe", Spain. The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505).S

    Efficacy of safety catheter devices in the prevention of occupational needlestick injuries: applied research in Liguria Region (Italy)

    Get PDF
    Health care workers who use or may be exposed to needles are at increased risk of needlestick injuries which can lead to serious infections with bloodborne pathogens. These injuries can be avoided by eliminating the unnecessary use of needles, using safety devices. The present study was aimed at evaluating the impact of a safety-engineered device, with passive fully automatic needlestick protection, on the reduction of needlestick injuries among health care workers. The setting of the study was a network of five public health care institutions situated in a Northern Italian Region. Data about the type of device, the number of employees and the amount of catheter devices used per year were collected through regular meetings with health care workers over a period of five years.The most remarkable result of this study was represented by the huge risk reduction estimated for safety devices. Indeed, the risk of needlestick injuries due to conventional devices was found to be 25 fold higher than that observed for safety devices. However, it is noteworthy that a discernible part of this excess can be explained by the different background amount of devices used. Moreover, the descriptive analysis suggested that individuals with a poor/moderate training level showed a lower risk, albeit not statistically significant, than those with a good/high training.In conclusion, there is a convincing evidence of a causal connection between the introduction of safety devices and reduction in the occurrence of needlestick injuries. This consideration pushes to introduce safety devices into daily clinical practice

    H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Ibeta pathway activation

    Get PDF
    15 p.Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs.We have demonstrated that H-rasgene deletion produces mice hypotensionviaa soluble guanylate cyclase-proteinkinase G (PKG)–dependent mechanism. In this study, we analyzed the consequences of H-rasdeletiononcardiacremodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Leftventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H-ras2/2) and control wild-type (H-ras+/+) mice, as were extracellular matrix proteinexpression. Increased cardiac PKG-Ibprotein expression in H-ras2/2mice suggests the involvement of this proteinin heart protection.Ex vivoexperiments on cardiac explants could support this mechanism, as PKG blockadeblunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H-ras2/2mice. Geneticmodulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3b-dependent activation ofthe transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iboverexpressionin H-ras2/2mouse embryonic fibroblasts. This study demonstrates that H-rasdeletion protects against AngII-induced cardiac remodeling, possiblyviaa mechanism in which PKG-Iboverexpression could play a partial role, andpoints to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.Instituto de Salud Carlos IIIUniversidad de AlcaláFundación SenefroFEDE

    Activation of Serine One-Carbon Metabolism by Calcineurin A beta 1 Reduces Myocardial Hypertrophy and Improves Ventricular Function

    Get PDF
    BACKGROUND In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. OBJECTIVES The authors aimed to determine the role of the calcineurin splicing variant CnA beta 1 in the context of cardiac hypertrophy and its mechanism of action. METHODS Transgenic mice overexpressing CnAb1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnA beta 1 (CnA beta 1(Delta i12) mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. RESULTS In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnA beta 1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAb1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnA beta 1. CnA beta 1(Delta i12) mice show increased cardiac hypertrophy and declined contractility. CONCLUSIONS The metabolic reprogramming induced by CnAb1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches. (J Am Coll Cardiol 2018; 71: 654-67) (C) 2018 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).This work was supported by grants from the European Union (CardioNeT-ITN-289600 and CardioNext-608027 to Dr. Lara-Pezzi; Meet-ITN-317433 to Dr. Enriquez; UE0/MCA1108 to Dr. Acin-Perez), from the Spanish Ministry of Economy and Competitiveness (SAF2015-65722-R and SAF2012-31451 to Dr. Lara-Pezzi; SAF2015-71521-REDC, BFU2013-50448, and SAF2012-32776 to Dr. Enriquez; RyC-2011-07826 to Dr. Acin-Perez; BIO2012-37926 and BIO2015-67580-P to Dr. Vazquez), from the Spanish Carlos III Institute of Health (CPII14/00027 to Dr. Lara-Pezzi; RD12/0042/066 to Drs. Garcia-Pavia and Lara-Pezzi), from the Regional Government of Madrid (2010-BMD-2321 ``Fibroteam´´ to Dr. Lara-Pezzi; 2011-BMD-2402 ``Mitolab´´ to Dr. Enriquez) and the FIS-ISCIII (PRB2-IPT13/0001 and RD12/0042/0056-RIC-RETICS to Dr. Vazquez). This work was also supported by the Plan Estatal de IthornDthornI 2013-2016-European Regional Development Fund (FEDER) ``A way of making Europe,´´ Spain. The CNIC is supported by the Spanish Ministry of Economy and Competitiveness and by the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). Drs. Vazquez and Garcia-Pavia have served as consultants for VL39. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Drs. Padron-Barthe, Villalba-Orero, and Gomez-Salinero contributed equally to this work and are joint first authors. Robyn Shaw, MD, PhD, served as Guest Editor for this paper.S
    • …
    corecore