16 research outputs found

    Coupled ocean-atmosphere modeling and predictions

    Get PDF
    Key aspects of the current state of the ability of global and regional climate models to represent dynamical processes and precipitation variations are summarized. Interannual, decadal, and globalwarming timescales, wherein the influence of the oceans is relevant and the potential for predictability is highest, are emphasized. Oceanic influences on climate occur throughout the ocean and extend over land to affect many types of climate variations, including monsoons, the El Niño Southern Oscillation, decadal oscillations, and the response to greenhouse gas emissions. The fundamental ideas of coupling between the ocean-atmosphere-land system are explained for these modes in both global and regional contexts. Global coupled climate models are needed to represent and understand the complicated processes involved and allow us to make predictions over land and sea. Regional coupled climate models are needed to enhance our interpretation of the fine-scale response. The mechanisms by which large-scale, low-frequency variations can influence shorter timescale variations and drive regionalscale effects are also discussed. In this light of these processes, the prospects for practical climate predictability are also presented.AJMwas supported by theNSFEarth System Modeling Program (OCE1419306) and the NOAA Climate Variability and Prediction Program (NA14OAR4310276). HS thanks the Office of Naval Research for support under N00014-15-1-2588. LPP was supported by “Advanced Studies in Medium and High Latitudes Oceanography” (CAPES 23038.004304/2014-28) and “National Institute of Science andTechnology of the Cryosphere” (CNPq/PROANTAR704222/2009). VM was supported by NOAA grant NA12OAR4310078. TGJ was supported by the U. S. Naval Research Laboratory 6.2 project “Fresh Water Balance in the Coupled Ocean-Atmosphere System” (BE-435-040-62435N-6777) YHT was supported by the MOST grant 106-2111-M-002-001, Taiwan

    A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons

    Get PDF
    This work examines the sources of moisture affecting the semi-arid Brazilian Northeast (NEB) during its pre-rainy and rainy season (JFMAM) through a Lagrangian diagnosis method. The FLEXPART model identifies the humidity contributions to the moisture budget over a region through the continuous computation of changes in the specific humidity along back or forward trajectories up to 10 days period. The numerical experiments were done for the period that spans between 2000 and 2004 and results were aggregated on a monthly basis. Results show that besides a minor local recycling component, the vast majority of moisture reaching NEB area is originated in the south Atlantic basin and that the nearby wet Amazon basin bears almost no impact. Moreover, although the maximum precipitation in the “Poligono das Secas” region (PS) occurs in March and the maximum precipitation associated with air parcels emanating from the South Atlantic towards PS is observed along January to March, the highest moisture contribution from this oceanic region occurs slightly later (April). A dynamical analysis suggests that the maximum precipitation observed in the PS sector does not coincide with the maximum moisture supply probably due to the combined effect of the Walker and Hadley cells in inhibiting the rising motions over the region in the months following April

    Severe Impact and Subsequent Recovery of a Coral Assemblage following the 1997–8 El Niño Event: A 17-Year Study from Bahia, Brazil

    Get PDF
    The coral reefs of northern Bahia evolved in isolation from other Atlantic systems and under conditions of high environmental stress, particularly high turbidity. We have monitored the scleractinian assemblage of four shallow bank reefs (Praia do Forte, Itacimirim, Guarajuba and Abai) annually for 17 years since 1995, collecting quantitative data on diversity and density of coral colonies. As the sampling period included the 1997-8 El Niño event, the most severe on record, for the first time these results allow a quantitative assessment of the long-term impact of this major environmental stressor on such a coral assemblage. After El Niño, most species showed significantly reduced densities of colonies, this decline occurring for the subsequent two years without evidence of any new settlement until 2001. From 2000 to 2007 the species Porites astreoides went unrecorded. Recovery was slow, and multivariate analysis revealed that assemblages had not returned to the pre-El Niño state until 2011. It therefore took 13 years for full recovery of the coral assemblage to occur, which has consequences for reef systems if such El-Niño events become more frequent in the future

    Stable Isotopes in Precipitation Recording South American Summer Monsoon and ENSO Variability - Observations and Model Results

    Get PDF
    The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence delta(18)O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance ( low level) and exit ( upper level) region over the western equatorial Atlantic is used to de. ne interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between delta(18)O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called "amount effect", often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in delta(18)O. In many locations the stable isotopic composition is closely related to El Nino-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and delta(18)O variability. Therefore many regions show a weakened relationship between SASM and delta(18)O, once the SASM signal is decomposed into its ENSO-, and non-ENSO- related variance. [References: 69
    corecore