15 research outputs found

    Spacelab 4: Primate experiment support hardware

    Get PDF
    A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated

    Helical grip for the cable cars of San Francisco

    Get PDF
    A helical cable car grip to minimize high maintenance costs of San Francisco's cable car operation is presented. The grip establishes a rolling contact between the cable and grip to reduce sliding friction and associated cable wear. The design, development, and testing of the helical cable car grip are described

    Swashplate control system

    Get PDF
    A mechanical system to control the position of a rotating swashplate is developed. This system provides independent lateral cyclic, longitudinal cyclic and collective pitch control of a helicopter rotor attached to the swashplate, without use of a mixer box. The system also provide direct, linear readout of cyclic and collective swashplate positions

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.En prens

    Synthesis for mixed arithmetic

    Get PDF
    This article presents a methodology to use a powerful arithmetic (redundant arithmetic) in some parts of designs in order to fasten them without a large increase in area, thanks to the use of both conventional and redundant number systems. This implies speci c constraints in the scheduling process. An integer linear programming (ILP) formulation is proposed which nds an optimal solution for reasonable examples. In order to solve the problem of possibly huge ILP computational time, a general solution, based on a constraint graph partitioning, is proposed

    Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins

    No full text
    Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads

    Improving Tiltrotor Whirl-Mode Stability with Rotor Design Variations

    No full text
    Further increases in tiltrotor speeds are limited by coupled wing/rotor whirl-mode aeroelastic instability. Increased power, thrust, and rotor efficiency are not enough: the whirl-mode stability boundary must also be improved. With current technology, very stiff, thick wings of limited aspect ratio are essential to meet the stability requirements, which severely limits cruise efficiency and maximum speed. Larger and more efficient tiltrotors will need longer and lighter wings, for which whirl-mode flutter is a serious design issue. Numerous approaches to improving the whirl-mode airspeed boundary have been investigated, including tailored stiffness wings, active stability augmentation, variable geometry rotors, highly swept tips, and at one extreme, folding rotors. The research reported herein began with the much simpler approach of adjusting the chordwise positions of the rotor blade aerodynamic center and center of gravity, effected by offsetting the airfoil quarter chord or structural mass with respect to the elastic axis. The research was recently extended to include variations in blade sweep, control system stiffness, and pitch-flap coupling (delta(sub 3)). As an introduction to the subject, and to establish a baseline against which to measure stability improvements, this report will first summarize results. The paper will then discuss more advanced studies of swept blades and control-system modifications
    corecore